BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23147668)

  • 1. Biological network inference for drug discovery.
    Lecca P; Priami C
    Drug Discov Today; 2013 Mar; 18(5-6):256-64. PubMed ID: 23147668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network systems biology for drug discovery.
    Arrell DK; Terzic A
    Clin Pharmacol Ther; 2010 Jul; 88(1):120-5. PubMed ID: 20520604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of network biology on drug toxicology.
    Gautier L; Taboureau O; Audouze K
    Expert Opin Drug Metab Toxicol; 2013 Nov; 9(11):1409-18. PubMed ID: 23937336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A network inference workflow applied to virulence-related processes in Salmonella typhimurium.
    Taylor RC; Singhal M; Weller J; Khoshnevis S; Shi L; McDermott J
    Ann N Y Acad Sci; 2009 Mar; 1158():143-58. PubMed ID: 19348639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Network pharmacology and drug discovery].
    Wang J; Li XJ
    Sheng Li Ke Xue Jin Zhan; 2011 Aug; 42(4):241-5. PubMed ID: 22066413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Correlation to Causality: Statistical Approaches to Learning Regulatory Relationships in Large-Scale Biomolecular Investigations.
    Ness RO; Sachs K; Vitek O
    J Proteome Res; 2016 Mar; 15(3):683-90. PubMed ID: 26731284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel paradigm for potential drug-targets discovery: quantifying relationships of enzymes and cascade interactions of neighboring biological processes to identify drug-targets.
    Chen L; Wang Q; Zhang L; Tai J; Wang H; Li W; Li X; He W; Li X
    Mol Biosyst; 2011 Apr; 7(4):1033-41. PubMed ID: 21270979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network analysis has diverse roles in drug discovery.
    Hasan S; Bonde BK; Buchan NS; Hall MD
    Drug Discov Today; 2012 Aug; 17(15-16):869-74. PubMed ID: 22627007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational approaches to the topology, stability and dynamics of metabolic networks.
    Steuer R
    Phytochemistry; 2007; 68(16-18):2139-51. PubMed ID: 17574639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug target identification in sphingolipid metabolism by computational systems biology tools: metabolic control analysis and metabolic pathway analysis.
    Ozbayraktar FB; Ulgen KO
    J Biomed Inform; 2010 Aug; 43(4):537-49. PubMed ID: 20348024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous inference of biological networks of multiple species from genome-wide data and evolutionary information: a semi-supervised approach.
    Kashima H; Yamanishi Y; Kato T; Sugiyama M; Tsuda K
    Bioinformatics; 2009 Nov; 25(22):2962-8. PubMed ID: 19689962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inference of active transcriptional networks by integration of gene expression kinetics modeling and multisource data.
    Vu TT; Vohradsky J
    Genomics; 2009 May; 93(5):426-33. PubMed ID: 19442636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cause-effect relationships in medicine: a protein network perspective.
    Fliri AF; Loging WT; Volkmann RA
    Trends Pharmacol Sci; 2010 Nov; 31(11):547-55. PubMed ID: 20810173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DREAMS of metabolism.
    Soh KC; Hatzimanikatis V
    Trends Biotechnol; 2010 Oct; 28(10):501-8. PubMed ID: 20727603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breeding and Genetics Symposium: building single nucleotide polymorphism-derived gene regulatory networks: Towards functional genomewide association studies.
    Reverter A; Fortes MR
    J Anim Sci; 2013 Feb; 91(2):530-6. PubMed ID: 23097399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring gene functions through dissection of relevance networks: interleaving the intra- and inter-species views.
    Klie S; Mutwil M; Persson S; Nikoloski Z
    Mol Biosyst; 2012 Sep; 8(9):2233-41. PubMed ID: 22744313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pattern-oriented specification of gene network inference processes.
    Trepode NW; de Farias CR; Barrera J
    Comput Biol Med; 2013 Oct; 43(10):1415-27. PubMed ID: 24034733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycogen debranching enzyme 6 (AGL), enolase 1 (ENOSF1), ectonucleotide pyrophosphatase 2 (ENPP2_1), glutathione S-transferase 3 (GSTM3_3) and mannosidase (MAN2B2) metabolism computational network analysis between chimpanzee and human left cerebrum.
    Sun L; Wang L; Jiang M; Huang J; Lin H
    Cell Biochem Biophys; 2011 Dec; 61(3):493-505. PubMed ID: 21735130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Windowed Granger causal inference strategy improves discovery of gene regulatory networks.
    Finkle JD; Wu JJ; Bagheri N
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2252-2257. PubMed ID: 29440433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.