These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23147799)

  • 1. Microchannel-induced change of chemical wave propagation dynamics: importance of ratio between the inlet and the channel sizes.
    Nabika H; Sato M; Unoura K
    Phys Chem Chem Phys; 2013 Jan; 15(1):154-8. PubMed ID: 23147799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagation Behaviors of an Acid Wavefront Through a Microchannel Junction.
    Nabika H; Hasegawa T; Unoura K
    J Phys Chem B; 2015 Jul; 119(30):9874-82. PubMed ID: 26132891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated tunable interferometer controlled by liquid diffusion in polydimethylsiloxane.
    Zou Y; Shen Z; Chen X; Di Z; Chen X
    Opt Express; 2012 Aug; 20(17):18931-6. PubMed ID: 23038532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional chemical profile manipulation using two-dimensional autonomous microfluidic control.
    Kim Y; Pekkan K; Messner WC; Leduc PR
    J Am Chem Soc; 2010 Feb; 132(4):1339-47. PubMed ID: 20063880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and simulation of the micromixer with chaotic advection in twisted microchannels.
    Jen CP; Wu CY; Lin YC; Wu CY
    Lab Chip; 2003 May; 3(2):77-81. PubMed ID: 15100786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetically-driven flow mixing in microchannels with wavy surface.
    Chen CK; Cho CC
    J Colloid Interface Sci; 2007 Aug; 312(2):470-80. PubMed ID: 17442332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-Directional Fluidic Flow Induced by Chemical Wave Propagation in a Microchannel.
    Arai M; Takahashi K; Hattori M; Hasegawa T; Sato M; Unoura K; Nabika H
    J Phys Chem B; 2016 May; 120(20):4654-60. PubMed ID: 27167307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaotic mixing in cross-channel micromixers.
    Tabeling P; Chabert M; Dodge A; Jullien C; Okkels F
    Philos Trans A Math Phys Eng Sci; 2004 May; 362(1818):987-1000. PubMed ID: 15306480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetic-vortex formation near a two-part cylinder with same-sign zeta potentials in a straight microchannel.
    Wang C; Song Y; Pan X
    Electrophoresis; 2020 Jun; 41(10-11):793-801. PubMed ID: 32012307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of shear rate on propagation of blood clotting determined using microfluidics and numerical simulations.
    Runyon MK; Kastrup CJ; Johnson-Kerner BL; Ha TG; Ismagilov RF
    J Am Chem Soc; 2008 Mar; 130(11):3458-64. PubMed ID: 18302373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direction control of chemical wave propagation in self-oscillating gel array.
    Tateyama S; Shibuta Y; Yoshida R
    J Phys Chem B; 2008 Feb; 112(6):1777-82. PubMed ID: 18205351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An approach to extract rate constants from reaction--diffusion dynamics in a microchannel.
    Salmon JB; Dubrocq C; Tabeling P; Charier S; Alcor D; Jullien L; Ferrage F
    Anal Chem; 2005 Jun; 77(11):3417-24. PubMed ID: 15924370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting.
    Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP
    Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of geometric separation mechanisms by implementing curved constrictions in a biochip microchannel fluidic separator.
    Xue X; Bailey C
    Comput Methods Biomech Biomed Engin; 2013; 16(3):314-27. PubMed ID: 22229479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfabrication of cylindrical microfluidic channel networks for microvascular research.
    Huang Z; Li X; Martins-Green M; Liu Y
    Biomed Microdevices; 2012 Oct; 14(5):873-83. PubMed ID: 22729782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of scroll wave turbulence in a three-dimensional reaction-diffusion system with gradient.
    Qiao C; Wu Y; Lu X; Wang C; Ouyang Q; Wang H
    Chaos; 2008 Jun; 18(2):026109. PubMed ID: 18601511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic pool structure for cell docking and rapid mixing.
    Yang J; Yang J; Yin ZQ; Svir I; Xu J; Luo HY; Wang M; Cao Y; Hu N; Liao YJ; Zheng XL
    Anal Chim Acta; 2009 Feb; 634(1):61-7. PubMed ID: 19154811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the staggered herringbone mixer with a simple analytical model.
    Stroock AD; McGraw GJ
    Philos Trans A Math Phys Eng Sci; 2004 May; 362(1818):971-86. PubMed ID: 15306479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study.
    Brandt-Pollmann U; Lebiedz D; Diehl M; Sager S; Schlöder J
    Chaos; 2005 Sep; 15(3):33901. PubMed ID: 16252992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for DNA detection in a microchannel: fluid dynamics phenomena and optimization of microchannel structure.
    Yamaguchi Y; Ogura D; Yamashita K; Miyazaki M; Nakamura H; Maeda H
    Talanta; 2006 Jan; 68(3):700-7. PubMed ID: 18970378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.