BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 23148045)

  • 21. In vitro anti-metastatic activity of enterolactone, a mammalian lignan derived from flax lignan, and down-regulation of matrix metalloproteinases in MCF-7 and MDA MB 231 cell lines.
    Mali AV; Wagh UV; Hegde MV; Chandorkar SS; Surve SV; Patole MV
    Indian J Cancer; 2012; 49(1):181-7. PubMed ID: 22842186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial oncobioenergetic index: A potential biomarker to predict progression from indolent to aggressive prostate cancer.
    Vayalil PK; Landar A
    Oncotarget; 2015 Dec; 6(40):43065-80. PubMed ID: 26515588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antiproliferative activity of lignans against the breast carcinoma cell lines MCF 7 and BT 20.
    Abarzua S; Serikawa T; Szewczyk M; Richter DU; Piechulla B; Briese V
    Arch Gynecol Obstet; 2012 Apr; 285(4):1145-51. PubMed ID: 22037685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glycoprotein transmembrane nmb: an androgen-downregulated gene attenuates cell invasion and tumorigenesis in prostate carcinoma cells.
    Tsui KH; Chang YL; Feng TH; Chang PL; Juang HH
    Prostate; 2012 Sep; 72(13):1431-42. PubMed ID: 22290289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boric acid inhibits human prostate cancer cell proliferation.
    Barranco WT; Eckhert CD
    Cancer Lett; 2004 Dec; 216(1):21-9. PubMed ID: 15500945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Small molecule tolfenamic acid inhibits PC-3 cell proliferation and invasion in vitro, and tumor growth in orthotopic mouse model for prostate cancer.
    Sankpal UT; Abdelrahim M; Connelly SF; Lee CM; Madero-Visbal R; Colon J; Smith J; Safe S; Maliakal P; Basha R
    Prostate; 2012 Nov; 72(15):1648-58. PubMed ID: 22473873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mammalian phytoestrogens: enterodiol and enterolactone.
    Wang LQ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2002 Sep; 777(1-2):289-309. PubMed ID: 12270221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of dietary lignans in the reduction of breast cancer risk.
    Saarinen NM; Wärri A; Airio M; Smeds A; Mäkelä S
    Mol Nutr Food Res; 2007 Jul; 51(7):857-66. PubMed ID: 17576639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibitory Effects of Enterolactone on Growth and Metastasis in Human Breast Cancer.
    Xiong XY; Hu XJ; Li Y; Liu CM
    Nutr Cancer; 2015; 67(8):1324-32. PubMed ID: 26473769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tranilast inhibits hormone refractory prostate cancer cell proliferation and suppresses transforming growth factor beta1-associated osteoblastic changes.
    Izumi K; Mizokami A; Li YQ; Narimoto K; Sugimoto K; Kadono Y; Kitagawa Y; Konaka H; Koh E; Keller ET; Namiki M
    Prostate; 2009 Aug; 69(11):1222-34. PubMed ID: 19434660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural determinants of plant lignans for growth of mammary tumors and hormonal responses in vivo.
    Saarinen NM; Penttinen PE; Smeds AI; Hurmerinta TT; Mäkelä SI
    J Steroid Biochem Mol Biol; 2005 Feb; 93(2-5):209-19. PubMed ID: 15860264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasma enterolactone and risk of prostate cancer in middle-aged Swedish men.
    Wallström P; Drake I; Sonestedt E; Gullberg B; Bjartell A; Olsson H; Adlercreutz H; Tikkanen MJ; Wirfält E
    Eur J Nutr; 2018 Oct; 57(7):2595-2606. PubMed ID: 28884432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uptake and antitumoral effects of iodine and 6-iodolactone in differentiated and undifferentiated human prostate cancer cell lines.
    Aranda N; Sosa S; Delgado G; Aceves C; Anguiano B
    Prostate; 2013 Jan; 73(1):31-41. PubMed ID: 22576883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Phytoestrogenis properties of flaxseed lignans].
    Martinchik AN; Zubtsov VV
    Vopr Pitan; 2012; 81(6):61-6. PubMed ID: 23530438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple Molecular pathways explain the anti-proliferative effect of valproic acid on prostate cancer cells in vitro and in vivo.
    Shabbeer S; Kortenhorst MS; Kachhap S; Galloway N; Rodriguez R; Carducci MA
    Prostate; 2007 Jul; 67(10):1099-110. PubMed ID: 17477369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytostatic inhibition of cancer cell growth by lignan secoisolariciresinol diglucoside.
    Ayella A; Lim S; Jiang Y; Iwamoto T; Lin D; Tomich J; Wang W
    Nutr Res; 2010 Nov; 30(11):762-9. PubMed ID: 21130295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential effects of cholesterol and phytosterols on cell proliferation, apoptosis and expression of a prostate specific gene in prostate cancer cell lines.
    Ifere GO; Barr E; Equan A; Gordon K; Singh UP; Chaudhary J; Igietseme JU; Ananaba GA
    Cancer Detect Prev; 2009; 32(4):319-28. PubMed ID: 19186008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anti-tumor effect of ascorbic acid, lysine, proline, arginine, and epigallocatechin gallate on prostate cancer cell lines PC-3, LNCaP, and DU145.
    Roomi MW; Ivanov V; Kalinovsky T; Niedzwiecki A; Rath M
    Res Commun Mol Pathol Pharmacol; 2004; 115-116():251-64. PubMed ID: 17564322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mammalian lignans inhibit the growth of estrogen-independent human colon tumor cells.
    Sung MK; Lautens M; Thompson LU
    Anticancer Res; 1998; 18(3A):1405-8. PubMed ID: 9673348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of androgen receptor expression by Z-isochaihulactone mediated by the JNK signaling pathway and might be related to cytotoxicity in prostate cancer.
    Liu PY; Lin SZ; Sheu JJ; Lin CT; Lin PC; Chou YW; Huang MH; Chiou TW; Harn HJ
    Prostate; 2013 Apr; 73(5):531-41. PubMed ID: 23038474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.