These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 23148161)

  • 41. Drug discovery opportunities and challenges at g protein coupled receptors for long chain free Fatty acids.
    Holliday ND; Watson SJ; Brown AJ
    Front Endocrinol (Lausanne); 2011; 2():112. PubMed ID: 22649399
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients.
    Wellendorph P; Johansen LD; Bräuner-Osborne H
    Mol Pharmacol; 2009 Sep; 76(3):453-65. PubMed ID: 19487246
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fatty acid binding receptors and their physiological role in type 2 diabetes.
    Swaminath G
    Arch Pharm (Weinheim); 2008 Dec; 341(12):753-61. PubMed ID: 19009545
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The role of G-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity.
    Oh DY; Lagakos WS
    Curr Opin Clin Nutr Metab Care; 2011 Jul; 14(4):322-7. PubMed ID: 21587066
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Short-chain fatty acids and regulation of pancreatic endocrine secretion in mice.
    Ørgaard A; Jepsen SL; Holst JJ
    Islets; 2019; 11(5):103-111. PubMed ID: 31469342
    [TBL] [Abstract][Full Text] [Related]  

  • 46. G-protein-coupled receptors as fat sensors.
    Vinolo MA; Hirabara SM; Curi R
    Curr Opin Clin Nutr Metab Care; 2012 Mar; 15(2):112-6. PubMed ID: 22234165
    [TBL] [Abstract][Full Text] [Related]  

  • 47. GPR119 agonists for the treatment of type 2 diabetes: an updated patent review (2014-present).
    Li H; Fang Y; Guo S; Yang Z
    Expert Opin Ther Pat; 2021 Sep; 31(9):795-808. PubMed ID: 33896337
    [No Abstract]   [Full Text] [Related]  

  • 48. Free fatty acid receptor 1 as a novel therapeutic target for type 2 diabetes mellitus-current status.
    Eleazu C; Charles A; Eleazu K; Achi N
    Chem Biol Interact; 2018 Jun; 289():32-39. PubMed ID: 29704509
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intestinal nutrient sensing and blood glucose control.
    Zietek T; Daniel H
    Curr Opin Clin Nutr Metab Care; 2015 Jul; 18(4):381-8. PubMed ID: 26001654
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The short-chain free fatty acid receptor FFAR3 is expressed and potentiates contraction in human airway smooth muscle.
    Mizuta K; Sasaki H; Zhang Y; Matoba A; Emala CW
    Am J Physiol Lung Cell Mol Physiol; 2020 Jun; 318(6):L1248-L1260. PubMed ID: 32209026
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolic control via nutrient-sensing mechanisms: role of taste receptors and the gut-brain neuroendocrine axis.
    Raka F; Farr S; Kelly J; Stoianov A; Adeli K
    Am J Physiol Endocrinol Metab; 2019 Oct; 317(4):E559-E572. PubMed ID: 31310579
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2.
    Tolhurst G; Heffron H; Lam YS; Parker HE; Habib AM; Diakogiannaki E; Cameron J; Grosse J; Reimann F; Gribble FM
    Diabetes; 2012 Feb; 61(2):364-71. PubMed ID: 22190648
    [TBL] [Abstract][Full Text] [Related]  

  • 53. GPR119 as a fat sensor.
    Hansen HS; Rosenkilde MM; Holst JJ; Schwartz TW
    Trends Pharmacol Sci; 2012 Jul; 33(7):374-81. PubMed ID: 22560300
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Obesity-induced asthma: Role of free fatty acid receptors.
    Mizuta K; Matoba A; Shibata S; Masaki E; Emala CW
    Jpn Dent Sci Rev; 2019 Nov; 55(1):103-107. PubMed ID: 31516639
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Suppression of free fatty acid receptor 1 expression in pancreatic β-cells in obese type 2 diabetic db/db mice: a potential role of pancreatic and duodenal homeobox factor 1.
    Kohara K; Obata A; Kimura T; Shimoda M; Moriuchi S; Okauchi S; Hirukawa H; Mune T; Kaku K; Kaneto H
    Endocr J; 2019 Jan; 66(1):43-50. PubMed ID: 30333365
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lipid sensing in the brain and regulation of energy balance.
    Moullé VS; Picard A; Le Foll C; Levin BE; Magnan C
    Diabetes Metab; 2014 Feb; 40(1):29-33. PubMed ID: 24210646
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases.
    Christiansen E; Watterson KR; Stocker CJ; Sokol E; Jenkins L; Simon K; Grundmann M; Petersen RK; Wargent ET; Hudson BD; Kostenis E; Ejsing CS; Cawthorne MA; Milligan G; Ulven T
    Br J Nutr; 2015 Jun; 113(11):1677-88. PubMed ID: 25916176
    [TBL] [Abstract][Full Text] [Related]  

  • 58. G protein-coupled receptors: signalling and regulation by lipid agonists for improved glucose homoeostasis.
    Moran BM; Flatt PR; McKillop AM
    Acta Diabetol; 2016 Apr; 53(2):177-88. PubMed ID: 26739335
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease.
    Holvoet P
    Verh K Acad Geneeskd Belg; 2008; 70(3):193-219. PubMed ID: 18669160
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The regulation of K- and L-cell activity by GLUT2 and the calcium-sensing receptor CasR in rat small intestine.
    Mace OJ; Schindler M; Patel S
    J Physiol; 2012 Jun; 590(12):2917-36. PubMed ID: 22495587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.