BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23148261)

  • 1. Dissecting a regulatory calcium-binding site of CLC-K kidney chloride channels.
    Gradogna A; Fenollar-Ferrer C; Forrest LR; Pusch M
    J Gen Physiol; 2012 Dec; 140(6):681-96. PubMed ID: 23148261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A regulatory calcium-binding site at the subunit interface of CLC-K kidney chloride channels.
    Gradogna A; Babini E; Picollo A; Pusch M
    J Gen Physiol; 2010 Sep; 136(3):311-23. PubMed ID: 20805576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of renal ClC-K chloride channels depends on an intact N terminus of their accessory subunit barttin.
    Wojciechowski D; Thiemann S; Schaal C; Rahtz A; de la Roche J; Begemann B; Becher T; Fischer M
    J Biol Chem; 2018 Jun; 293(22):8626-8637. PubMed ID: 29674316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of sites responsible for the potentiating effect of niflumic acid on ClC-Ka kidney chloride channels.
    Zifarelli G; Liantonio A; Gradogna A; Picollo A; Gramegna G; De Bellis M; Murgia AR; Babini E; Camerino DC; Pusch M
    Br J Pharmacol; 2010 Aug; 160(7):1652-61. PubMed ID: 20649569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two highly homologous members of the ClC chloride channel family in both rat and human kidney.
    Kieferle S; Fong P; Bens M; Vandewalle A; Jentsch TJ
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):6943-7. PubMed ID: 8041726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cytoplasmic domain mutation in ClC-Kb affects long-distance communication across the membrane.
    Martinez GQ; Maduke M
    PLoS One; 2008 Jul; 3(7):e2746. PubMed ID: 18648499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of interaction of niflumic acid with heterologously expressed kidney CLC-K chloride channels.
    Picollo A; Liantonio A; Babini E; Camerino DC; Pusch M
    J Membr Biol; 2007 Apr; 216(2-3):73-82. PubMed ID: 17659402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkaline pH block of CLC-K kidney chloride channels mediated by a pore lysine residue.
    Gradogna A; Pusch M
    Biophys J; 2013 Jul; 105(1):80-90. PubMed ID: 23823226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptophan Scanning Mutagenesis Identifies the Molecular Determinants of Distinct Barttin Functions.
    Wojciechowski D; Fischer M; Fahlke C
    J Biol Chem; 2015 Jul; 290(30):18732-43. PubMed ID: 26063802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxyl-terminal Truncations of ClC-Kb Abolish Channel Activation by Barttin Via Modified Common Gating and Trafficking.
    Stölting G; Bungert-Plümke S; Franzen A; Fahlke C
    J Biol Chem; 2015 Dec; 290(51):30406-16. PubMed ID: 26453302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Barttin activates ClC-K channel function by modulating gating.
    Fischer M; Janssen AG; Fahlke C
    J Am Soc Nephrol; 2010 Aug; 21(8):1281-9. PubMed ID: 20538786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of voltage-gated chloride channels of the ClC gene family.
    Jentsch TJ; Günther W; Pusch M; Schwappach B
    J Physiol; 1995 Jan; 482(P):19S-25S. PubMed ID: 7730971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular determinants of differential pore blocking of kidney CLC-K chloride channels.
    Picollo A; Liantonio A; Didonna MP; Elia L; Camerino DC; Pusch M
    EMBO Rep; 2004 Jun; 5(6):584-9. PubMed ID: 15167890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Pharmacology of Kidney and Inner Ear CLC-K Chloride Channels.
    Gradogna A; Pusch M
    Front Pharmacol; 2010; 1():130. PubMed ID: 21833170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional and structural analysis of ClC-K chloride channels involved in renal disease.
    Waldegger S; Jentsch TJ
    J Biol Chem; 2000 Aug; 275(32):24527-33. PubMed ID: 10831588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. I-J loop involvement in the pharmacological profile of CLC-K channels expressed in Xenopus oocytes.
    Gradogna A; Imbrici P; Zifarelli G; Liantonio A; Camerino DC; Pusch M
    Biochim Biophys Acta; 2014 Nov; 1838(11):2745-56. PubMed ID: 25073071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Insights into the Mechanism of NO
    Lagostena L; Zifarelli G; Picollo A
    J Am Soc Nephrol; 2019 Feb; 30(2):293-302. PubMed ID: 30635372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation and reduction control of the inactivation gating of Torpedo ClC-0 chloride channels.
    Li Y; Yu WP; Lin CW; Chen TY
    Biophys J; 2005 Jun; 88(6):3936-45. PubMed ID: 15778445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the mouse ClC-K1/Barttin chloride channel.
    L'Hoste S; Diakov A; Andrini O; Genete M; Pinelli L; Grand T; Keck M; Paulais M; Beck L; Korbmacher C; Teulon J; Lourdel S
    Biochim Biophys Acta; 2013 Nov; 1828(11):2399-409. PubMed ID: 23791703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular modeling of p-chlorophenoxyacetic acid binding to the CLC-0 channel.
    Moran O; Traverso S; Elia L; Pusch M
    Biochemistry; 2003 May; 42(18):5176-85. PubMed ID: 12731858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.