BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

576 related articles for article (PubMed ID: 23148415)

  • 1. Dynamical movement primitives: learning attractor models for motor behaviors.
    Ijspeert AJ; Nakanishi J; Hoffmann H; Pastor P; Schaal S
    Neural Comput; 2013 Feb; 25(2):328-73. PubMed ID: 23148415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning parametric dynamic movement primitives from multiple demonstrations.
    Matsubara T; Hyon SH; Morimoto J
    Neural Netw; 2011 Jun; 24(5):493-500. PubMed ID: 21388784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introduction to focus issue: bipedal locomotion--from robots to humans.
    Milton JG
    Chaos; 2009 Jun; 19(2):026101. PubMed ID: 19566261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection.
    Girard B; Tabareau N; Pham QC; Berthoz A; Slotine JJ
    Neural Netw; 2008 May; 21(4):628-41. PubMed ID: 18495422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From embodied mind to embodied robotics: humanities and system theoretical aspects.
    Mainzer K
    J Physiol Paris; 2009; 103(3-5):296-304. PubMed ID: 19665560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composite adaptive control with locally weighted statistical learning.
    Nakanishi J; Farrell JA; Schaal S
    Neural Netw; 2005 Jan; 18(1):71-90. PubMed ID: 15649663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation.
    Isaeva OB; Kuznetsov SP; Mosekilde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016228. PubMed ID: 21867294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achieving "organic compositionality" through self-organization: reviews on brain-inspired robotics experiments.
    Tani J; Nishimoto R; Paine RW
    Neural Netw; 2008 May; 21(4):584-603. PubMed ID: 18495423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random parameter-switching synthesis of a class of hyperbolic attractors.
    Danca MF
    Chaos; 2008 Sep; 18(3):033111. PubMed ID: 19045449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering entrainment and adaptation in limit cycle systems : From biological inspiration to applications in robotics.
    Buchli J; Righetti L; Ijspeert AJ
    Biol Cybern; 2006 Dec; 95(6):645-64. PubMed ID: 17146662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bridging Dynamical Systems and Optimal Trajectory Approaches to Speech Motor Control With Dynamic Movement Primitives.
    Parrell B; Lammert AC
    Front Psychol; 2019; 10():2251. PubMed ID: 31681077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergence and development of embodied cognition: a constructivist approach using robots.
    Kuniyoshi Y; Yorozu Y; Suzuki S; Sangawa S; Ohmura Y; Terada K; Nagakubo A
    Prog Brain Res; 2007; 164():425-45. PubMed ID: 17920445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states.
    Ku WL; Girvan M; Ott E
    Chaos; 2015 Dec; 25(12):123122. PubMed ID: 26723161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hopf Bifurcations in Complex Multiagent Activity: The Signature of Discrete to Rhythmic Behavioral Transitions.
    Patil G; Nalepka P; Kallen RW; Richardson MJ
    Brain Sci; 2020 Aug; 10(8):. PubMed ID: 32784867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamics of density dependent population models.
    Guckenheimer J; Oster G; Ipaktchi A
    J Math Biol; 1977 May; 4(2):8-147. PubMed ID: 886232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavioral robustness: an emergent phenomenon by means of distributed mechanisms and neurodynamic determinacy.
    Fernandez-Leon JA
    Biosystems; 2012 Jan; 107(1):34-51. PubMed ID: 21963775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction of primitive representation from captured human movements and measured ground reaction force to generate physically consistent imitated behaviors.
    Ariki Y; Hyon SH; Morimoto J
    Neural Netw; 2013 Apr; 40():32-43. PubMed ID: 23380596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor primitive and sequence self-organization in a hierarchical recurrent neural network.
    Paine RW; Tani J
    Neural Netw; 2004; 17(8-9):1291-309. PubMed ID: 15555867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.