BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23148417)

  • 21. TRH-receptor mobility and function in intact and cholesterol-depleted plasma membrane of HEK293 cells stably expressing TRH-R-eGFP.
    Brejchová J; Sýkora J; Ostašov P; Merta L; Roubalová L; Janáček J; Hof M; Svoboda P
    Biochim Biophys Acta; 2015 Mar; 1848(3):781-96. PubMed ID: 25485475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative comparison of different fluorescent protein couples for fast FRET-FLIM acquisition.
    Padilla-Parra S; Audugé N; Lalucque H; Mevel JC; Coppey-Moisan M; Tramier M
    Biophys J; 2009 Oct; 97(8):2368-76. PubMed ID: 19843469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monitoring cell membrane recycling dynamics of proteins using whole-cell fluorescence recovery after photobleaching of pH-sensitive genetic tags.
    Michaluk P; Rusakov DA
    Nat Protoc; 2022 Dec; 17(12):3056-3079. PubMed ID: 36064755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate quantification of diffusion and binding kinetics of non-integral membrane proteins by FRAP.
    Berkovich R; Wolfenson H; Eisenberg S; Ehrlich M; Weiss M; Klafter J; Henis YI; Urbakh M
    Traffic; 2011 Nov; 12(11):1648-57. PubMed ID: 21810156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A study of the dynamics of PTEN proteins in living cells using in vivo fluorescence correlation spectroscopy.
    Du Z; Dong C; Ren J
    Methods Appl Fluoresc; 2017 Apr; 5(2):024008. PubMed ID: 28373603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantifying transient binding of ISWI chromatin remodelers in living cells by pixel-wise photobleaching profile evolution analysis.
    Erdel F; Rippe K
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):E3221-30. PubMed ID: 23129662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ras Diffusion and Interactions with the Plasma Membrane Measured by FRAP Variations.
    Gutman O; Ehrlich M; Henis YI
    Methods Mol Biol; 2021; 2262():185-197. PubMed ID: 33977477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence recovery after photobleaching reveals the biochemistry of nucleocytoplasmic exchange.
    Bizzarri R; Cardarelli F; Serresi M; Beltram F
    Anal Bioanal Chem; 2012 Jun; 403(8):2339-51. PubMed ID: 22585053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative measurement of intracellular protein dynamics using photobleaching or photoactivation of fluorescent proteins.
    Matsuda T; Nagai T
    Microscopy (Oxf); 2014 Dec; 63(6):403-8. PubMed ID: 25268018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence recovery after photobleaching (FRAP) of fluorescence tagged proteins in dendritic spines of cultured hippocampal neurons.
    Zheng CY; Petralia RS; Wang YX; Kachar B
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21525845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescence perturbation techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, photoactivation, photoconversion, and FLIP.
    Bancaud A; Huet S; Rabut G; Ellenberg J
    Cold Spring Harb Protoc; 2010 Dec; 2010(12):pdb.top90. PubMed ID: 21123431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of the First Chromophore-Forming Residue on Photobleaching and Oxidative Photoconversion of EGFP and EYFP.
    Sen T; Mamontova AV; Titelmayer AV; Shakhov AM; Astafiev AA; Acharya A; Lukyanov KA; Krylov AI; Bogdanov AM
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31652505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Live-cell imaging reveals divergent intracellular dynamics of polyglutamine disease proteins and supports a sequestration model of pathogenesis.
    Chai Y; Shao J; Miller VM; Williams A; Paulson HL
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9310-5. PubMed ID: 12084819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A plant cell model of polyglutamine aggregation: Identification and characterisation of macromolecular and small-molecule anti-protein aggregation activity in vivo.
    Liu G; Hu Y; Tunnacliffe A; Zheng Y
    J Biotechnol; 2015 Aug; 207():39-46. PubMed ID: 26003885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EGF Receptor Stalls upon Activation as Evidenced by Complementary Fluorescence Correlation Spectroscopy and Fluorescence Recovery after Photobleaching Measurements.
    Vámosi G; Friedländer-Brock E; Ibrahim SM; Brock R; Szöllősi J; Vereb G
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31323980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice.
    Lorén N; Hagman J; Jonasson JK; Deschout H; Bernin D; Cella-Zanacchi F; Diaspro A; McNally JG; Ameloot M; Smisdom N; Nydén M; Hermansson AM; Rudemo M; Braeckmans K
    Q Rev Biophys; 2015 Aug; 48(3):323-87. PubMed ID: 26314367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Existence of periplasmic barriers preventing green fluorescent protein diffusion from cell to cell in the cyanobacterium Anabaena sp. strain PCC 7120.
    Zhang LC; Chen YF; Chen WL; Zhang CC
    Mol Microbiol; 2008 Nov; 70(4):814-23. PubMed ID: 18990181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative interpretation of binding reactions of rapidly diffusing species using fluorescence recovery after photobleaching.
    Tsibidis GD
    J Microsc; 2009 Mar; 233(3):384-90. PubMed ID: 19250459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of confinement on proteins concentrated in lithocholic acid based organic nanotubes.
    Lu Q; Kim Y; Bassim N; Collins GE
    J Colloid Interface Sci; 2015 Sep; 454():97-104. PubMed ID: 26004574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A quantitative approach to analyze binding diffusion kinetics by confocal FRAP.
    Kang M; Day CA; DiBenedetto E; Kenworthy AK
    Biophys J; 2010 Nov; 99(9):2737-47. PubMed ID: 21044570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.