BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23148482)

  • 21. Chemical composition and water permeability of the cuticular wax barrier in rose leaf and petal: A comparative investigation.
    Cheng G; Huang H; Zhou L; He S; Zhang Y; Cheng X
    Plant Physiol Biochem; 2019 Feb; 135():404-410. PubMed ID: 30635221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supercritical fluid extraction of heather (Calluna vulgaris) and evaluation of anti-hepatitis C virus activity of the extracts.
    García-Risco MR; Vázquez E; Sheldon J; Steinmann E; Riebesehl N; Fornari T; Reglero G
    Virus Res; 2015 Feb; 198():9-14. PubMed ID: 25550074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homologous very-long-chain 1,3-alkanediols and 3-hydroxyaldehydes in leaf cuticular waxes of Ricinus communis L.
    Vermeer CP; Nastold P; Jetter R
    Phytochemistry; 2003 Feb; 62(3):433-8. PubMed ID: 12620356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Studies on the chemical constituents of Vaccinium iteophyllum].
    Wei J; Zhu HY; Shen DF; Yang B; Yang XS
    Zhong Yao Cai; 2007 Jan; 30(1):47-9. PubMed ID: 17539303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Composition of the epicuticular waxes coating the adaxial side of Phyllostachys aurea leaves: Identification of very-long-chain primary amides.
    Racovita RC; Jetter R
    Phytochemistry; 2016 Oct; 130():252-61. PubMed ID: 27402630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cuticular waxes and flavonol aglycones of mistletoes.
    Haas K; Bauer M; Wollenweber E
    Z Naturforsch C J Biosci; 2003; 58(7-8):464-70. PubMed ID: 12939028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The cuticular wax composition and crystal coverage of leaves and petals differ in a consistent manner between plant species.
    Tunstad SA; Bull ID; Rands SA; Whitney HM
    Open Biol; 2024 May; 14(5):230430. PubMed ID: 38806146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Triterpenes and sterols in the flowers and leaves of Prunus spinosa L. (Rosaceae).
    Wolbiś M; Olszewska M; Wesołowski WJ
    Acta Pol Pharm; 2001; 58(6):459-62. PubMed ID: 12197619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new ethylene glycol triterpenoid from the leaves of Psidium guajava.
    Begum S; Ali SN; Hassan SI; Siddiqui BS
    Nat Prod Res; 2007 Jul; 21(8):742-8. PubMed ID: 17616904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ analysis by microspectroscopy reveals triterpenoid compositional patterns within leaf cuticles of Prunus laurocerasus.
    Yu MM; Konorov SO; Schulze HG; Blades MW; Turner RF; Jetter R
    Planta; 2008 Mar; 227(4):823-34. PubMed ID: 18000679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new pentacyclic triterpenoid from the leaves of
    Wang J; Jin M; Jin C; Ye C; Zhou Y; Wang R; Cui H; Zhou W; Li G
    Nat Prod Res; 2020 Dec; 34(23):3313-3319. PubMed ID: 30810367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pentacyclic triterpenoids from olive fruit and leaf.
    Guinda A; Rada M; Delgado T; Gutiérrez-Adánez P; Castellano JM
    J Agric Food Chem; 2010 Sep; 58(17):9685-91. PubMed ID: 20712364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis.
    Fukushima EO; Seki H; Ohyama K; Ono E; Umemoto N; Mizutani M; Saito K; Muranaka T
    Plant Cell Physiol; 2011 Dec; 52(12):2050-61. PubMed ID: 22039103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GC-MS Metabolomics to Evaluate the Composition of Plant Cuticular Waxes for Four Triticum aestivum Cultivars.
    Lavergne FD; Broeckling CD; Cockrell DM; Haley SD; Peairs FB; Jahn CE; Heuberger AL
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29360745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Composition of cuticular waxes coating flag leaf blades and peduncles of Triticum aestivum cv. Bethlehem.
    Racovita RC; Hen-Avivi S; Fernandez-Moreno JP; Granell A; Aharoni A; Jetter R
    Phytochemistry; 2016 Oct; 130():182-92. PubMed ID: 27264640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cuticular Waxes and Cutin in
    Pereira H; Simões R; Miranda I
    Molecules; 2023 Aug; 28(17):. PubMed ID: 37687194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fractionation and Characterization of Triterpenoids from
    Vilkickyte G; Petrikaite V; Marksa M; Ivanauskas L; Jakstas V; Raudone L
    Antioxidants (Basel); 2023 Feb; 12(2):. PubMed ID: 36830023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast separation of triterpenoids by supercritical fluid chromatography/evaporative light scattering detector.
    Lesellier E; Destandau E; Grigoras C; Fougère L; Elfakir C
    J Chromatogr A; 2012 Dec; 1268():157-65. PubMed ID: 23141985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Very-long-chain 3-hydroxy fatty acids, 3-hydroxy fatty acid methyl esters and 2-alkanols from cuticular waxes of Aloe arborescens leaves.
    Racovita RC; Peng C; Awakawa T; Abe I; Jetter R
    Phytochemistry; 2015 May; 113():183-94. PubMed ID: 25200334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photochemical alteration of 3-oxygenated triterpenoids: implications for the origin of 3,4-seco-triterpenoids in sediments.
    Simoneit BR; Xu Y; Neto RR; Cloutier JB; Jaffé R
    Chemosphere; 2009 Jan; 74(4):543-50. PubMed ID: 19022472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.