These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
696 related articles for article (PubMed ID: 23148722)
1. Epitaxial graphene on 4H-SiC(0001) grown under nitrogen flux: evidence of low nitrogen doping and high charge transfer. Velez-Fort E; Mathieu C; Pallecchi E; Pigneur M; Silly MG; Belkhou R; Marangolo M; Shukla A; Sirotti F; Ouerghi A ACS Nano; 2012 Dec; 6(12):10893-900. PubMed ID: 23148722 [TBL] [Abstract][Full Text] [Related]
2. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. Jin Z; Yao J; Kittrell C; Tour JM ACS Nano; 2011 May; 5(5):4112-7. PubMed ID: 21476571 [TBL] [Abstract][Full Text] [Related]
3. Visualizing individual nitrogen dopants in monolayer graphene. Zhao L; He R; Rim KT; Schiros T; Kim KS; Zhou H; Gutiérrez C; Chockalingam SP; Arguello CJ; Pálová L; Nordlund D; Hybertsen MS; Reichman DR; Heinz TF; Kim P; Pinczuk A; Flynn GW; Pasupathy AN Science; 2011 Aug; 333(6045):999-1003. PubMed ID: 21852495 [TBL] [Abstract][Full Text] [Related]
5. Nitrogen-doped graphene sheets grown by chemical vapor deposition: synthesis and influence of nitrogen impurities on carrier transport. Lu YF; Lo ST; Lin JC; Zhang W; Lu JY; Liu FH; Tseng CM; Lee YH; Liang CT; Li LJ ACS Nano; 2013 Aug; 7(8):6522-32. PubMed ID: 23879622 [TBL] [Abstract][Full Text] [Related]
7. Epitaxial graphene on SiC(0001) and [Formula: see text]: from surface reconstructions to carbon electronics. Starke U; Riedl C J Phys Condens Matter; 2009 Apr; 21(13):134016. PubMed ID: 21817491 [TBL] [Abstract][Full Text] [Related]
8. In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition. Wang C; Zhou Y; He L; Ng TW; Hong G; Wu QH; Gao F; Lee CS; Zhang W Nanoscale; 2013 Jan; 5(2):600-5. PubMed ID: 23203220 [TBL] [Abstract][Full Text] [Related]
9. Effects of Pb Intercalation on the Structural and Electronic Properties of Epitaxial Graphene on SiC. Yurtsever A; Onoda J; Iimori T; Niki K; Miyamachi T; Abe M; Mizuno S; Tanaka S; Komori F; Sugimoto Y Small; 2016 Aug; 12(29):3956-66. PubMed ID: 27295020 [TBL] [Abstract][Full Text] [Related]
10. Facile preparation of nitrogen-doped few-layer graphene via supercritical reaction. Qian W; Cui X; Hao R; Hou Y; Zhang Z ACS Appl Mater Interfaces; 2011 Jul; 3(7):2259-64. PubMed ID: 21644571 [TBL] [Abstract][Full Text] [Related]
11. Structural and Electronic Properties of Nitrogen-Doped Graphene. Sforzini J; Hapala P; Franke M; van Straaten G; Stöhr A; Link S; Soubatch S; Jelínek P; Lee TL; Starke U; Švec M; Bocquet FC; Tautz FS Phys Rev Lett; 2016 Mar; 116(12):126805. PubMed ID: 27058093 [TBL] [Abstract][Full Text] [Related]
12. Electron-Hole Symmetry Breaking in Charge Transport in Nitrogen-Doped Graphene. Li J; Lin L; Rui D; Li Q; Zhang J; Kang N; Zhang Y; Peng H; Liu Z; Xu HQ ACS Nano; 2017 May; 11(5):4641-4650. PubMed ID: 28463482 [TBL] [Abstract][Full Text] [Related]
13. Incorporating isolated molybdenum (Mo) atoms into bilayer epitaxial graphene on 4H-SiC(0001). Wan W; Li H; Huang H; Wong SL; Lv L; Gao Y; Wee AT ACS Nano; 2014 Jan; 8(1):970-6. PubMed ID: 24354296 [TBL] [Abstract][Full Text] [Related]
14. Surface transfer p-type doping of epitaxial graphene. Chen W; Chen S; Qi DC; Gao XY; Wee AT J Am Chem Soc; 2007 Aug; 129(34):10418-22. PubMed ID: 17665912 [TBL] [Abstract][Full Text] [Related]
15. The influence of source molecule structure on the low temperature growth of nitrogen-doped graphene. Katoh T; Imamura G; Obata S; Bhanuchandra M; Copley G; Yorimitsu H; Saiki K Phys Chem Chem Phys; 2015 Jun; 17(21):14115-21. PubMed ID: 25960003 [TBL] [Abstract][Full Text] [Related]
16. Thermal stability study of nitrogen functionalities in a graphene network. Kumar A; Ganguly A; Papakonstantinou P J Phys Condens Matter; 2012 Jun; 24(23):235503. PubMed ID: 22576101 [TBL] [Abstract][Full Text] [Related]
17. Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties. Lazar P; Zbořil R; Pumera M; Otyepka M Phys Chem Chem Phys; 2014 Jul; 16(27):14231-5. PubMed ID: 24912566 [TBL] [Abstract][Full Text] [Related]
18. Formation of nitrogen-doped graphene nanoribbons via chemical unzipping. Cruz-Silva R; Morelos-Gómez A; Vega-Díaz S; Tristán-López F; Elias AL; Perea-López N; Muramatsu H; Hayashi T; Fujisawa K; Kim YA; Endo M; Terrones M ACS Nano; 2013 Mar; 7(3):2192-204. PubMed ID: 23421313 [TBL] [Abstract][Full Text] [Related]
19. Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons. Li Y; Zhou Z; Shen P; Chen Z ACS Nano; 2009 Jul; 3(7):1952-8. PubMed ID: 19555066 [TBL] [Abstract][Full Text] [Related]
20. Hole defects and nitrogen doping in graphene: implication for supercapacitor applications. Luo G; Liu L; Zhang J; Li G; Wang B; Zhao J ACS Appl Mater Interfaces; 2013 Nov; 5(21):11184-93. PubMed ID: 24134508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]