BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 23149071)

  • 1. Recent progress in elucidating signalling proteolytic pathways in muscle wasting: potential clinical implications.
    Polge C; Heng AE; Combaret L; Béchet D; Taillandier D; Attaix D
    Nutr Metab Cardiovasc Dis; 2013 Dec; 23 Suppl 1():S1-5. PubMed ID: 23149071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of skeletal muscle atrophy.
    Ventadour S; Attaix D
    Curr Opin Rheumatol; 2006 Nov; 18(6):631-5. PubMed ID: 17053511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ubiquitin-proteasome system and skeletal muscle wasting.
    Attaix D; Ventadour S; Codran A; Béchet D; Taillandier D; Combaret L
    Essays Biochem; 2005; 41():173-86. PubMed ID: 16250905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is there a common mechanism linking muscle wasting in various disease types?
    Tisdale MJ
    Curr Opin Support Palliat Care; 2007 Dec; 1(4):287-92. PubMed ID: 18685377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular signaling pathways regulating muscle proteolysis during atrophy.
    Franch HA; Price SR
    Curr Opin Clin Nutr Metab Care; 2005 May; 8(3):271-5. PubMed ID: 15809529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome.
    Sandri M
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2121-9. PubMed ID: 23665154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular signals activating muscle proteolysis in chronic kidney disease: a two-stage process.
    Du J; Hu Z; Mitch WE
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2147-55. PubMed ID: 15982920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, Ca2+ -activated, and ubiquitin-proteasome proteolytic pathways.
    Voisin L; Breuillé D; Combaret L; Pouyet C; Taillandier D; Aurousseau E; Obled C; Attaix D
    J Clin Invest; 1996 Apr; 97(7):1610-7. PubMed ID: 8601625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ubiquitin-proteasome pathway as a therapeutic target for muscle wasting.
    Tisdale MJ
    J Support Oncol; 2005; 3(3):209-17. PubMed ID: 15915823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy.
    Murton AJ; Constantin D; Greenhaff PL
    Biochim Biophys Acta; 2008 Dec; 1782(12):730-43. PubMed ID: 18992328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms modulating muscle mass.
    Glass DJ
    Trends Mol Med; 2003 Aug; 9(8):344-50. PubMed ID: 12928036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ubiquitin-proteasome and the mitochondria-associated apoptotic pathways are sequentially downregulated during recovery after immobilization-induced muscle atrophy.
    Vazeille E; Codran A; Claustre A; Averous J; Listrat A; Béchet D; Taillandier D; Dardevet D; Attaix D; Combaret L
    Am J Physiol Endocrinol Metab; 2008 Nov; 295(5):E1181-90. PubMed ID: 18812460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment with pharmacological PPARα agonists stimulates the ubiquitin proteasome pathway and myofibrillar protein breakdown in skeletal muscle of rodents.
    Ringseis R; Keller J; Lukas I; Spielmann J; Most E; Couturier A; König B; Hirche F; Stangl GI; Wen G; Eder K
    Biochim Biophys Acta; 2013 Jan; 1830(1):2105-17. PubMed ID: 23041501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myostatin promotes the wasting of human myoblast cultures through promoting ubiquitin-proteasome pathway-mediated loss of sarcomeric proteins.
    Lokireddy S; Mouly V; Butler-Browne G; Gluckman PD; Sharma M; Kambadur R; McFarlane C
    Am J Physiol Cell Physiol; 2011 Dec; 301(6):C1316-24. PubMed ID: 21900687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical discussion on the relationship between E3 ubiquitin ligases, protein degradation, and skeletal muscle wasting: it's not that simple.
    Hughes DC; Goodman CA; Baehr LM; Gregorevic P; Bodine SC
    Am J Physiol Cell Physiol; 2023 Dec; 325(6):C1567-C1582. PubMed ID: 37955121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-cachexia in patients with stages I-III non-small cell lung cancer: systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system.
    Op den Kamp CM; Langen RC; Minnaard R; Kelders MC; Snepvangers FJ; Hesselink MK; Dingemans AC; Schols AM
    Lung Cancer; 2012 Apr; 76(1):112-7. PubMed ID: 22018880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms to explain wasting of muscle and fat in cancer cachexia.
    Argilés JM; López-Soriano FJ; Busquets S
    Curr Opin Support Palliat Care; 2007 Dec; 1(4):293-8. PubMed ID: 18685378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implication of altered ubiquitin-proteasome system and ER stress in the muscle atrophy of diabetic rats.
    Reddy SS; Shruthi K; Prabhakar YK; Sailaja G; Reddy GB
    Arch Biochem Biophys; 2018 Feb; 639():16-25. PubMed ID: 29277369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle atrophy: disease-induced mechanisms may mask disuse atrophy.
    Malavaki CJ; Sakkas GK; Mitrou GI; Kalyva A; Stefanidis I; Myburgh KH; Karatzaferi C
    J Muscle Res Cell Motil; 2015 Dec; 36(6):405-21. PubMed ID: 26728748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca(2+)-dependent proteolysis in muscle wasting.
    Costelli P; Reffo P; Penna F; Autelli R; Bonelli G; Baccino FM
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2134-46. PubMed ID: 15893952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.