BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23149187)

  • 1. Metal mobilization in soil by two structurally defined polyphenols.
    Schmidt MA; Gonzalez JM; Halvorson JJ; Hagerman AE
    Chemosphere; 2013 Feb; 90(6):1870-7. PubMed ID: 23149187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using magnetic and chemical measurements to detect atmospherically-derived metal pollution in artificial soils and metal uptake in plants.
    Sapkota B; Cioppa MT
    Environ Pollut; 2012 Nov; 170():131-44. PubMed ID: 22789520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium.
    Senesi GS; Dell'Aglio M; Gaudiuso R; De Giacomo A; Zaccone C; De Pascale O; Miano TM; Capitelli M
    Environ Res; 2009 May; 109(4):413-20. PubMed ID: 19272593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochemical release of humic and fulvic acid-bound metals from simulated soil and streamwater.
    Porcal P; Amirbahman A; Kopácek J; Novák F; Norton SA
    J Environ Monit; 2009 May; 11(5):1064-71. PubMed ID: 19436866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?
    Grybos M; Davranche M; Gruau G; Petitjean P
    J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metals in soils of children's urban environments in the small northern European city of Uppsala.
    Ljung K; Selinus O; Otabbong E
    Sci Total Environ; 2006 Aug; 366(2-3):749-59. PubMed ID: 16309734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of optimized BCR three-step sequential and dilute HCl single extraction procedures for soil-plant metal transfer predictions in contaminated lands.
    Kubová J; Matús P; Bujdos M; Hagarová I; Medved' J
    Talanta; 2008 May; 75(4):1110-22. PubMed ID: 18585191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple kinetic Langmuir modeling to predict the environmental behaviour of As(v) in soils.
    van Elteren JT; Slejkovec Z; Arčon I; Beeston MP; Pohar A
    J Environ Monit; 2011 Jun; 13(6):1625-33. PubMed ID: 21547296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extension of coupled multispecies metal transport and speciation (TRANSPEC) model to soil.
    Bhavsar SP; Gandhi N; Diamond ML
    Chemosphere; 2008 Jan; 70(5):914-24. PubMed ID: 17707882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils: implications for its use soil remediation.
    Meers E; Tack FM; Verloo MG
    Chemosphere; 2008 Jan; 70(3):358-63. PubMed ID: 17870142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behaviour of metalloids and metals from highly polluted soil samples when mobilized by water--evaluation of static versus dynamic leaching.
    Wennrich R; Daus B; Müller K; Stärk HJ; Brüggemann L; Morgenstern P
    Environ Pollut; 2012 Jun; 165():59-66. PubMed ID: 22406842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tannic acid and saponin for removing arsenic from brownfield soils: Mobilization, distribution and speciation.
    Gusiatin ZM
    J Environ Sci (China); 2014 Apr; 26(4):855-64. PubMed ID: 25079416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical stabilization of metals and arsenic in contaminated soils using oxides--a review.
    Komárek M; Vaněk A; Ettler V
    Environ Pollut; 2013 Jan; 172():9-22. PubMed ID: 22982549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale assessment of methylarsenic reactivity in soil. 1. Sorption and desorption on soils.
    Shimizu M; Arai Y; Sparks DL
    Environ Sci Technol; 2011 May; 45(10):4293-9. PubMed ID: 21488668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobility and storage sinks for chromium and other metals in soils impacted by leather tannery wastes.
    Chen H; Arocena JM; Li J; Thring RW; Zhou J
    J Environ Monit; 2012 Dec; 14(12):3240-8. PubMed ID: 23149884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive sorption and transport of Pb2+, Ni2+, Mn2+, and Zn2+ in lateritic soil columns.
    Chotpantarat S; Ong SK; Sutthirat C; Osathaphan K
    J Hazard Mater; 2011 Jun; 190(1-3):391-6. PubMed ID: 21497019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant.
    Aşçi Y; Nurbaş M; Açikel YS
    J Hazard Mater; 2008 Jun; 154(1-3):663-73. PubMed ID: 18068293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical speciation studies on DU contaminated soils using flow field flow fractionation linked to inductively coupled plasma mass spectrometry (FlFFF-ICP-MS).
    Brittain SR; Cox AG; Tomos AD; Paterson E; Siripinyanond A; McLeod CW
    J Environ Monit; 2012 Mar; 14(3):782-90. PubMed ID: 22237634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal fractionation in a contaminated soil after reforestation: temporal changes versus spatial variability.
    Nowack B; Schulin R; Luster J
    Environ Pollut; 2010 Oct; 158(10):3272-8. PubMed ID: 20724048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.