These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23149300)

  • 1. A fuel-cell-assisted iron redox process for simultaneous sulfur recovery and electricity production from synthetic sulfide wastewater.
    Zhai LF; Song W; Tong ZH; Sun M
    J Hazard Mater; 2012 Dec; 243():350-6. PubMed ID: 23149300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.
    Sun M; Song W; Zhai LF; Cui YZ
    J Hazard Mater; 2013 Dec; 263 Pt 2():643-9. PubMed ID: 24220197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of high-strength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery.
    Blázquez E; Gabriel D; Baeza JA; Guisasola A
    Water Res; 2016 Nov; 105():395-405. PubMed ID: 27662048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of a Sulfide-Air Fuel Cell Coupled to a Sulfate-Reducing Biocathode for Elemental Sulfur Recovery.
    Blázquez E; Gabriel D; Baeza JA; Guisasola A; Ledezma P; Freguia S
    Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34071068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H2S(g) removal using a modified, low-ph liquid redox sulfur recovery (LRSR) process with electrochemical regeneration of the Fe catalyst couple.
    Gendel Y; Levi N; Lahav O
    Environ Sci Technol; 2009 Nov; 43(21):8315-9. PubMed ID: 19924962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lead removal and toxicity reduction from industrial wastewater through biological sulfate reduction process.
    Teekayuttasakul P; Annachhatre AP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Oct; 43(12):1424-30. PubMed ID: 18780220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture.
    Lee DJ; Lee CY; Chang JS
    J Hazard Mater; 2012 Dec; 243():67-72. PubMed ID: 23116719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical sulfide removal and recovery from paper mill anaerobic treatment effluent.
    Dutta PK; Rabaey K; Yuan Z; Rozendal RA; Keller J
    Water Res; 2010 Apr; 44(8):2563-71. PubMed ID: 20163816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous electrochemical treatment for sulfur recovery by a sulfide oxidation/vanadium(V) reduction galvanic cell.
    Kijjanapanich P; Kijjanapanich P; Annachhatre AP; Esposito G; Lens PN
    J Environ Manage; 2015 Feb; 149():263-70. PubMed ID: 25463589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies.
    Cheng S; Dempsey BA; Logan BE
    Environ Sci Technol; 2007 Dec; 41(23):8149-53. PubMed ID: 18186351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous electrochemical removal of aqueous sulfide.
    Dutta PK; Rabaey K; Yuan Z; Keller J
    Water Res; 2008 Dec; 42(20):4965-75. PubMed ID: 18954888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-accelerating sulfur reduction via polysulfide to realize a high-rate sulfidogenic reactor for wastewater treatment.
    Zhang L; Zhang Z; Sun R; Liang S; Chen GH; Jiang F
    Water Res; 2018 Mar; 130():161-167. PubMed ID: 29220716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovering phosphate and energy from anaerobic sludge digested wastewater with iron-air fuel cells: Two-chamber cell versus one-chamber cell.
    Wang R; Wan S; Lai L; Zhang M; Zeb BS; Qaisar M; Tan G; Yuan L
    Sci Total Environ; 2022 Jun; 825():154034. PubMed ID: 35202690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of sulfide precipitation with ferrous and ferric iron in wastewater.
    Kiilerich B; Nielsen AH; Vollertsen J
    Water Sci Technol; 2018 Oct; 78(5-6):1071-1081. PubMed ID: 30339532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfide-iron interactions in domestic wastewater from a gravity sewer.
    Haaning Nielsen A; Lens P; Vollertsen J; Hvitved-Jacobsen T
    Water Res; 2005 Jul; 39(12):2747-55. PubMed ID: 15978649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pH and iron concentrations on sulfide precipitation in wastewater collection systems.
    Nielsen AH; Hvitved-Jacobsen T; Vollertsen J
    Water Environ Res; 2008 Apr; 80(4):380-4. PubMed ID: 18536490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous removal of organic matter and iron from hydraulic fracturing flowback water through sulfur cycling in a microbial fuel cell.
    Zhang X; Zhang D; Huang Y; Zhang K; Lu P
    Water Res; 2018 Dec; 147():461-471. PubMed ID: 30343202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel up-flow inner-cycle anoxic bioreactor (UIAB) system for the treatment of sulfide wastewater from purification of biogas.
    Song Z; Li Q; Wang D; Zhang J; Xing J
    Water Sci Technol; 2012; 65(6):1033-40. PubMed ID: 22377999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of aqueous hydrogen sulfide by granular ferric hydroxide-kinetics, capacity and reuse.
    Sun J; Zhou J; Shang C; Kikkert GA
    Chemosphere; 2014 Dec; 117():324-9. PubMed ID: 25150683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of produced elementary sulfur in denitrifying sulfide removal process.
    Zhou X; Liu L; Chen C; Ren N; Wang A; Lee DJ
    Appl Microbiol Biotechnol; 2011 May; 90(3):1129-36. PubMed ID: 21286712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.