These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 2314947)
21. Dietary factors affecting trace element bioavailability from human milk, cow's milk and infant formulas. Lonnerdal B Prog Food Nutr Sci; 1985; 9(1-2):35-62. PubMed ID: 3911269 [TBL] [Abstract][Full Text] [Related]
22. An animal model to study iron availability from human diets. Rao BS; Prasad JS; Sarathy CV Br J Nutr; 1977 May; 37(3):451-6. PubMed ID: 405035 [TBL] [Abstract][Full Text] [Related]
23. Supplementation of milk with iron bound to lactoferrin using weanling mice. II: Effects on tissue manganese, zinc, and copper. Keen CL; Fransson GB; Lönnerdal B J Pediatr Gastroenterol Nutr; 1984 Mar; 3(2):256-61. PubMed ID: 6707846 [TBL] [Abstract][Full Text] [Related]
24. The absorption of iron as supplements in infant cereal and infant formulas. Rios E; Hunter RE; Cook JD; Smith NJ; Finch CA Pediatrics; 1975 May; 55(5):686-93. PubMed ID: 165454 [TBL] [Abstract][Full Text] [Related]
25. Supplementation of an adapted formula with bovine lactoferrin. 2. Effects on serum iron, ferritin and zinc levels. Chierici R; Sawatzki G; Tamisari L; Volpato S; Vigi V Acta Paediatr; 1992; 81(6-7):475-9. PubMed ID: 1392356 [TBL] [Abstract][Full Text] [Related]
26. Bioavailability in man of iron in human milk and cow's milk in relation to their calcium contents. Hallberg L; Rossander-Hultén L; Brune M; Gleerup A Pediatr Res; 1992 May; 31(5):524-7. PubMed ID: 1603633 [TBL] [Abstract][Full Text] [Related]
27. Calcium, zinc, and iron bioavailabilities from a commercial human milk fortifier: a comparison study. Etcheverry P; Wallingford JC; Miller DD; Glahn RP J Dairy Sci; 2004 Nov; 87(11):3629-37. PubMed ID: 15483146 [TBL] [Abstract][Full Text] [Related]
28. Effects of colostrum replacer supplemented with lactoferrin on the blood plasma immunoglobulin G concentration and intestinal absorption of xylose in the neonatal calf. Shea EC; Whitehouse NL; Erickson PS J Anim Sci; 2009 Jun; 87(6):2047-54. PubMed ID: 19286825 [TBL] [Abstract][Full Text] [Related]
29. Iron Absorption is Greater from Apo-Lactoferrin and is Similar Between Holo-Lactoferrin and Ferrous Sulfate: Stable Iron Isotope Studies in Kenyan Infants. Mikulic N; Uyoga MA; Mwasi E; Stoffel NU; Zeder C; Karanja S; Zimmermann MB J Nutr; 2020 Dec; 150(12):3200-3207. PubMed ID: 32886113 [TBL] [Abstract][Full Text] [Related]
30. Lactoferrin: affinity purification from human milk and polymorphonuclear neutrophils using monoclonal antibody (II 2C) to human lactoferrin, development of an immunoradiometric assay using II 2C, and myelopoietic regulation and receptor-binding characteristics. Broxmeyer HE; Bicknell DC; Gillis S; Harris EL; Pelus LM; Sledge GW Blood Cells; 1986; 11(3):429-46. PubMed ID: 3017479 [TBL] [Abstract][Full Text] [Related]
31. Specific binding of lactoferrin to brush-border membrane: ontogeny and effect of glycan chain. Davidson LA; Lönnerdal B Am J Physiol; 1988 Apr; 254(4 Pt 1):G580-5. PubMed ID: 2833117 [TBL] [Abstract][Full Text] [Related]
32. Bovine lactoferrin can be taken up by the human intestinal lactoferrin receptor and exert bioactivities. Lönnerdal B; Jiang R; Du X J Pediatr Gastroenterol Nutr; 2011 Dec; 53(6):606-14. PubMed ID: 21832946 [TBL] [Abstract][Full Text] [Related]
33. Retention and distribution of iron added to cow's milk and human milk as various salts and chelates. Kwock RO; Keen CL; Hegenauer J; Saltman P; Hurley LS; Lönnerdal B J Nutr; 1984 Aug; 114(8):1454-61. PubMed ID: 6747728 [TBL] [Abstract][Full Text] [Related]
34. [The role of lactoferrin in the proper development of newborns]. Artym J; Zimecki M Postepy Hig Med Dosw (Online); 2005; 59():421-32. PubMed ID: 16106243 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of Bioactivities of the Bovine Milk Lactoferrin-Osteopontin Complex in Infant Formulas. Jiang R; Liu L; Du X; Lönnerdal B J Agric Food Chem; 2020 Jun; 68(22):6104-6111. PubMed ID: 32362125 [TBL] [Abstract][Full Text] [Related]
36. Iron-dependent binding of bovine milk α-casein with holo-lactoferrin, but not holo-transferrin. Shibuya N; Yoshikawa Y; Watanabe K; Ohtsuka H; Orino K Biometals; 2012 Oct; 25(5):1083-8. PubMed ID: 22824971 [TBL] [Abstract][Full Text] [Related]
37. High absorption of fortification iron from current infant formulas. Hertrampf E; Olivares M; Pizarro F; Walter T J Pediatr Gastroenterol Nutr; 1998 Oct; 27(4):425-30. PubMed ID: 9779972 [TBL] [Abstract][Full Text] [Related]
38. Effects of feeding vitamin A and lactoferrin on epithelium of lymphoid tissues of intestine of neonatal calves. Schottstedt T; Muri C; Morel C; Philipona C; Hammon HM; Blum JW J Dairy Sci; 2005 Mar; 88(3):1050-61. PubMed ID: 15738240 [TBL] [Abstract][Full Text] [Related]
39. Human lactoferrin supplementation of infant formulas increases thymidine incorporation into the DNA of rat crypt cells. Nichols BL; McKee K; Putman M; Henry JF; Nichols VN J Pediatr Gastroenterol Nutr; 1989 Jan; 8(1):102-9. PubMed ID: 2732854 [TBL] [Abstract][Full Text] [Related]
40. In vivo study of the effect of lactoferrin on iron metabolism and bioavailability from different iron chemical species for formula milk fortification. Fernández-Menéndez S; Fernández-Sánchez ML; Alves Peixoto RR; Fernández-Colomer B; Sanz-Medel A Electrophoresis; 2018 Jul; 39(13):1702-1713. PubMed ID: 28945281 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]