BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23149604)

  • 1. Stable lipid bilayers based on micro- and nano-fabrication as a platform for recording ion-channel activities.
    Hirano-Iwata A; Oshima A; Mozumi H; Kimura Y; Niwano M
    Anal Sci; 2012; 28(11):1049-57. PubMed ID: 23149604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of human ether-a-go-go-related gene channels in microfabricated silicon chips.
    Oshima A; Hirano-Iwata A; Mozumi H; Ishinari Y; Kimura Y; Niwano M
    Anal Chem; 2013 May; 85(9):4363-9. PubMed ID: 23514363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanically stable solvent-free lipid bilayers in nano- and micro-tapered apertures for reconstitution of cell-free synthesized hERG channels.
    Tadaki D; Yamaura D; Araki S; Yoshida M; Arata K; Ohori T; Ishibashi KI; Kato M; Ma T; Miyata R; Tozawa Y; Yamamoto H; Niwano M; Hirano-Iwata A
    Sci Rep; 2017 Dec; 7(1):17736. PubMed ID: 29255199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-standing lipid bilayers in silicon chips-membrane stabilization based on microfabricated apertures with a nanometer-scale smoothness.
    Hirano-Iwata A; Aoto K; Oshima A; Taira T; Yamaguchi RT; Kimura Y; Niwano M
    Langmuir; 2010 Feb; 26(3):1949-52. PubMed ID: 19799400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro- and nano-technologies for lipid bilayer-based ion-channel functional assays.
    Hirano-Iwata A; Ishinari Y; Yamamoto H; Niwano M
    Chem Asian J; 2015 Jun; 10(6):1266-74. PubMed ID: 25702941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel Recordings of Transmembrane hERG Channel Currents Based on Solvent-Free Lipid Bilayer Microarray.
    Miyata R; Tadaki D; Yamaura D; Araki S; Sato M; Komiya M; Ma T; Yamamoto H; Niwano M; Hirano-Iwata A
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33478052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of Human Ion Channels into Solvent-free Lipid Bilayers Enhanced by Centrifugal Forces.
    Hirano-Iwata A; Ishinari Y; Yoshida M; Araki S; Tadaki D; Miyata R; Ishibashi K; Yamamoto H; Kimura Y; Niwano M
    Biophys J; 2016 May; 110(10):2207-15. PubMed ID: 27224486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphiphobic Septa Enhance the Mechanical Stability of Free-Standing Bilayer Lipid Membranes.
    Yamaura D; Tadaki D; Araki S; Yoshida M; Arata K; Ohori T; Ishibashi KI; Kato M; Ma T; Miyata R; Yamamoto H; Tero R; Sakuraba M; Ogino T; Niwano M; Hirano-Iwata A
    Langmuir; 2018 May; 34(19):5615-5622. PubMed ID: 29664647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impedance analysis and single-channel recordings on nano-black lipid membranes based on porous alumina.
    Römer W; Steinem C
    Biophys J; 2004 Feb; 86(2):955-65. PubMed ID: 14747331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractional polymerization of a suspended planar bilayer creates a fluid, highly stable membrane for ion channel recordings.
    Heitz BA; Jones IW; Hall HK; Aspinwall CA; Saavedra SS
    J Am Chem Soc; 2010 May; 132(20):7086-93. PubMed ID: 20441163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Artificial Cell Membrane Systems as a Platform for Reconstituting Ion Channels.
    Komiya M; Kato M; Tadaki D; Ma T; Yamamoto H; Tero R; Tozawa Y; Niwano M; Hirano-Iwata A
    Chem Rec; 2020 Jul; 20(7):730-742. PubMed ID: 31944562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical impedance spectroscopy and atomic force microscopic studies of electrical and mechanical properties of nano-black lipid membranes and size dependence.
    Zhu ZW; Wang Y; Zhang X; Sun CF; Li MG; Yan JW; Mao BW
    Langmuir; 2012 Oct; 28(41):14739-46. PubMed ID: 22985346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid bilayer microarray for parallel recording of transmembrane ion currents.
    Le Pioufle B; Suzuki H; Tabata KV; Noji H; Takeuchi S
    Anal Chem; 2008 Jan; 80(1):328-32. PubMed ID: 18001126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of individual protein channels in lipid bilayers suspended in nanopores.
    Studer A; Han X; Winkler FK; Tiefenauer LX
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):325-31. PubMed ID: 19576736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Channel activity of a viral transmembrane peptide in micro-BLMs: Vpu(1-32) from HIV-1.
    Römer W; Lam YH; Fischer D; Watts A; Fischer WB; Göring P; Wehrspohn RB; Gösele U; Steinem C
    J Am Chem Soc; 2004 Dec; 126(49):16267-74. PubMed ID: 15584764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerized planar suspended lipid bilayers for single ion channel recordings: comparison of several dienoyl lipids.
    Heitz BA; Xu J; Jones IW; Keogh JP; Comi TJ; Hall HK; Aspinwall CA; Saavedra SS
    Langmuir; 2011 Mar; 27(5):1882-90. PubMed ID: 21226498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilayer lipid membrane (BLM) based ion selective electrodes at the meso-, micro-, and nano-scales.
    Liu B; Rieck D; Van Wie BJ; Cheng GJ; Moffett DF; Kidwell DA
    Biosens Bioelectron; 2009 Mar; 24(7):1843-9. PubMed ID: 19008091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced long-term stability for single ion channel recordings using suspended poly(lipid) bilayers.
    Heitz BA; Xu J; Hall HK; Aspinwall CA; Saavedra SS
    J Am Chem Soc; 2009 May; 131(19):6662-3. PubMed ID: 19397328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Well-defined microapertures for ion channel biosensors.
    Halža E; Bro TH; Bilenberg B; Koçer A
    Anal Chem; 2013 Jan; 85(2):811-5. PubMed ID: 23256755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photolithographic Fabrication of Micro Apertures in Dry Film Polymer Sheets for Channel Recordings in Planar Lipid Bilayers.
    Khoury ME; Winterstein T; Weber W; Stein V; Schlaak HF; Thiel G
    J Membr Biol; 2019 Jun; 252(2-3):173-182. PubMed ID: 30863900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.