These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23149745)

  • 1. Tracking lithium transport and electrochemical reactions in nanoparticles.
    Wang F; Yu HC; Chen MH; Wu L; Pereira N; Thornton K; Van der Ven A; Zhu Y; Amatucci GG; Graetz J
    Nat Commun; 2012; 3():1201. PubMed ID: 23149745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes.
    Wang F; Robert R; Chernova NA; Pereira N; Omenya F; Badway F; Hua X; Ruotolo M; Zhang R; Wu L; Volkov V; Su D; Key B; Whittingham MS; Grey CP; Amatucci GG; Zhu Y; Graetz J
    J Am Chem Soc; 2011 Nov; 133(46):18828-36. PubMed ID: 21894971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism.
    Li L; Meng F; Jin S
    Nano Lett; 2012 Nov; 12(11):6030-7. PubMed ID: 23106167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real Time Observation of Lithium Insertion into Pre-Cycled Conversion-Type Materials.
    Hwang S; Su D
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33799392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure Stabilization by Mixed Anions in Oxyfluoride Cathodes for High-Energy Lithium Batteries.
    Kim SW; Pereira N; Chernova NA; Omenya F; Gao P; Whittingham MS; Amatucci GG; Su D; Wang F
    ACS Nano; 2015 Oct; 9(10):10076-84. PubMed ID: 26382877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Thin Layers in Nanostructures for Energy Storage.
    Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB
    Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Continuous Capacity Rising Performed by FeS/Fe
    Li C; Sarapulova A; Pfeifer K; Dsoke S
    ChemSusChem; 2020 Mar; 13(5):986-995. PubMed ID: 31912633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological Evolution of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size.
    Liu H; Wang J; Zhang X; Zhou D; Qi X; Qiu B; Fang J; Kloepsch R; Schumacher G; Liu Z; Li J
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4661-75. PubMed ID: 26824793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ TEM Study on Conversion-Type Electrodes for Rechargeable Ion Batteries.
    Cui J; Zheng H; He K
    Adv Mater; 2021 Feb; 33(6):e2000699. PubMed ID: 32578290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the Electrochemical Reaction Mechanism of ZnFe2O4 by In Situ Transmission Electron Microscopy.
    Su Q; Wang S; Yao L; Li H; Du G; Ye H; Fang Y
    Sci Rep; 2016 Jun; 6():28197. PubMed ID: 27306189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial lithium fluoride surface coating on silicon negative electrodes for the inhibition of electrolyte decomposition in lithium-ion batteries: visualization of a solid electrolyte interphase using in situ AFM.
    Haruta M; Kijima Y; Hioki R; Doi T; Inaba M
    Nanoscale; 2018 Sep; 10(36):17257-17264. PubMed ID: 30191945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafine Iron Pyrite (FeSâ‚‚) Nanocrystals Improve Sodium-Sulfur and Lithium-Sulfur Conversion Reactions for Efficient Batteries.
    Douglas A; Carter R; Oakes L; Share K; Cohn AP; Pint CL
    ACS Nano; 2015 Nov; 9(11):11156-65. PubMed ID: 26529682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface and interface engineering of electrode materials for lithium-ion batteries.
    Wang KX; Li XH; Chen JS
    Adv Mater; 2015 Jan; 27(3):527-45. PubMed ID: 25355133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy.
    Wang J; Chen-Wiegart YC; Wang J
    Nat Commun; 2014 Aug; 5():4570. PubMed ID: 25087693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase evolution of conversion-type electrode for lithium ion batteries.
    Li J; Hwang S; Guo F; Li S; Chen Z; Kou R; Sun K; Sun CJ; Gan H; Yu A; Stach EA; Zhou H; Su D
    Nat Commun; 2019 May; 10(1):2224. PubMed ID: 31110173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.