BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23149814)

  • 1. Diazinon-chemistry and environmental fate: a California perspective.
    Aggarwal V; Deng X; Tuli A; Goh KS
    Rev Environ Contam Toxicol; 2013; 223():107-40. PubMed ID: 23149814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption and desorption of chlorpyrifos to soils and sediments.
    Gebremariam SY; Beutel MW; Yonge DR; Flury M; Harsh JB
    Rev Environ Contam Toxicol; 2012; 215():123-75. PubMed ID: 22057931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate and effects of diazinon.
    Larkin DJ; Tjeerdema RS
    Rev Environ Contam Toxicol; 2000; 166():49-82. PubMed ID: 10868076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation of bound residues of diazinon in four UK soils: implications for risk assessment.
    Fenlon KA; Andreou K; Jones KC; Semple KT
    Environ Pollut; 2011 Mar; 159(3):776-81. PubMed ID: 21183261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of solid-liquid partition coefficients (K(d)) for diazinon, propetamphos and cis-permethrin: implications for sheep dip disposal.
    Cooke CM; Shaw G; Lester JN; Collins CD
    Sci Total Environ; 2004 Aug; 329(1-3):197-213. PubMed ID: 15262167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diurnal variation of diazinon volatilization: soil moisture effects.
    Reichman R; Rolston DE; Yates SR; Skaggs TH
    Environ Sci Technol; 2011 Mar; 45(6):2144-9. PubMed ID: 21319734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of microbial degradation of cypermethrin and diazinon in organically and conventionally managed soils.
    Fenlon KA; Jones KC; Semple KT
    J Environ Monit; 2007 Jun; 9(6):510-5. PubMed ID: 17554421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exposures of aquatic organisms to the organophosphorus insecticide, chlorpyrifos resulting from use in the United States.
    Williams WM; Giddings JM; Purdy J; Solomon KR; Giesy JP
    Rev Environ Contam Toxicol; 2014; 231():77-117. PubMed ID: 24723134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil photolysis in a moisture- and temperature-controlled environment. 2. Insecticides.
    Graebing P; Chib JS
    J Agric Food Chem; 2004 May; 52(9):2606-14. PubMed ID: 15113166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissipation of insecticides in a Mediterranean soil in the presence of wastewater and surfactant solutions. A kinetic model approach.
    Hernández-Soriano MC; Mingorance MD; Peña A
    Water Res; 2009 May; 43(9):2481-92. PubMed ID: 19349059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fate of 14C-diazinon in compost, compost-amended soil, and uptake by earthworms.
    Leland JE; Mullins DE; Berry DF
    J Environ Sci Health B; 2003 Nov; 38(6):697-712. PubMed ID: 14649702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation kinetics of chlorpyrifos and diazinon in volcanic and non-volcanic soils: influence of cyclodextrins.
    Báez ME; Espinoza J; Fuentes E
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25020-25035. PubMed ID: 29934831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental fate and toxicology of methomyl.
    Van Scoy AR; Yue M; Deng X; Tjeerdema RS
    Rev Environ Contam Toxicol; 2013; 222():93-109. PubMed ID: 22990946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diazinon degradation by a novel strain Ralstonia sp. DI-3 and X-ray crystal structure determination of the metabolite of diazinon.
    Wang G; Liu Y
    J Biosci; 2016 Sep; 41(3):359-66. PubMed ID: 27581928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic.
    Weber J; Halsall CJ; Muir D; Teixeira C; Small J; Solomon K; Hermanson M; Hung H; Bidleman T
    Sci Total Environ; 2010 Jul; 408(15):2966-84. PubMed ID: 19939436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil.
    Cycoń M; Wójcik M; Piotrowska-Seget Z
    Chemosphere; 2009 Jul; 76(4):494-501. PubMed ID: 19356785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of diazinon agricultural use in regions of frequent surface water detections in California, USA.
    Zhang X; Starner K; Goh KS; Gill S
    Bull Environ Contam Toxicol; 2012 Mar; 88(3):333-7. PubMed ID: 22139331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of triazine and organophosphorus pesticides on soil and biochar.
    Uchimiya M; Wartelle LH; Boddu VM
    J Agric Food Chem; 2012 Mar; 60(12):2989-97. PubMed ID: 22394556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of diazinon use, contamination in surface waters, and regulatory actions in California across water years 1992-2014.
    Wang D; Singhasemanon N; Goh KS
    Environ Monit Assess; 2017 Jul; 189(7):310. PubMed ID: 28585037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.