BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 23149911)

  • 61. Long non‑coding RNA SNHG14 affects the proliferation and apoptosis of childhood acute myeloid leukaemia cells by modulating the miR‑193b‑3p/MCL1 axis.
    Wang X; Li W; Chen Y; Zhou L
    Mol Med Rep; 2021 Feb; 23(2):. PubMed ID: 33300066
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Up-regulation of SPINT2/HAI-2 by Azacytidine in bone marrow mesenchymal stromal cells affects leukemic stem cell survival and adhesion.
    Roversi FM; Cury NM; Lopes MR; Ferro KP; Machado-Neto JA; Alvarez MC; Dos Santos GP; Giardini Rosa R; Longhini AL; Duarte ADSS; Pericole FV; Favaro P; Yunes JA; Saad STO
    J Cell Mol Med; 2019 Feb; 23(2):1562-1571. PubMed ID: 30484958
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A novel therapeutic strategy: the significance of exosomal miRNAs in acute myeloid leukemia.
    Salehi A
    Med Oncol; 2024 Jan; 41(2):62. PubMed ID: 38253748
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Induction of death (CD95/FAS), activation and adhesion (CD54) molecules on blast cells of acute myelogenous leukemias by TNF-alpha and IFN-gamma.
    Munker R; Andreeff M
    Cytokines Mol Ther; 1996 Sep; 2(3):147-59. PubMed ID: 9384699
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The role of exosomes and MYC in therapy resistance of acute myeloid leukemia: Challenges and opportunities.
    Mudgapalli N; Nallasamy P; Chava H; Chava S; Pathania AS; Gunda V; Gorantla S; Pandey MK; Gupta SC; Challagundla KB
    Mol Aspects Med; 2019 Dec; 70():21-32. PubMed ID: 31623866
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Small-molecule Hedgehog inhibitor attenuates the leukemia-initiation potential of acute myeloid leukemia cells.
    Fukushima N; Minami Y; Kakiuchi S; Kuwatsuka Y; Hayakawa F; Jamieson C; Kiyoi H; Naoe T
    Cancer Sci; 2016 Oct; 107(10):1422-1429. PubMed ID: 27461445
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Functional Niche Competition Between Normal Hematopoietic Stem and Progenitor Cells and Myeloid Leukemia Cells.
    Glait-Santar C; Desmond R; Feng X; Bat T; Chen J; Heuston E; Mizukawa B; Mulloy JC; Bodine DM; Larochelle A; Dunbar CE
    Stem Cells; 2015 Dec; 33(12):3635-42. PubMed ID: 26388434
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The role of platelet/endothelial cell adhesion molecule 1 (CD31) and CD38 antigens in marrow microenvironmental retention of acute myelogenous leukemia cells.
    Gallay N; Anani L; Lopez A; Colombat P; Binet C; Domenech J; Weksler BB; Malavasi F; Herault O
    Cancer Res; 2007 Sep; 67(18):8624-32. PubMed ID: 17875702
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Phenotypic, genotypic, and functional characterization of normal and acute myeloid leukemia-derived marrow endothelial cells.
    Pizzo RJ; Azadniv M; Guo N; Acklin J; Lacagnina K; Coppage M; Liesveld JL
    Exp Hematol; 2016 May; 44(5):378-89. PubMed ID: 26851308
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Circular RNAs Activity in the Leukemic Bone Marrow Microenvironment.
    Liccardo F; Iaiza A; Śniegocka M; Masciarelli S; Fazi F
    Noncoding RNA; 2022 Jul; 8(4):. PubMed ID: 35893233
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Histone Deacetylase Inhibitors Target the Leukemic Microenvironment by Enhancing a Nherf1-Protein Phosphatase 1α-TAZ Signaling Pathway in Osteoblasts.
    Kremer KN; Dudakovic A; Hess AD; Smith BD; Karp JE; Kaufmann SH; Westendorf JJ; van Wijnen AJ; Hedin KE
    J Biol Chem; 2015 Dec; 290(49):29478-92. PubMed ID: 26491017
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Microenvironmental remodeling as a parameter and prognostic factor of heterogeneous leukemogenesis in acute myelogenous leukemia.
    Kim JA; Shim JS; Lee GY; Yim HW; Kim TM; Kim M; Leem SH; Lee JW; Min CK; Oh IH
    Cancer Res; 2015 Jun; 75(11):2222-31. PubMed ID: 25791383
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Chronic myeloid leukemia-derived exosomes promote tumor growth through an autocrine mechanism.
    Raimondo S; Saieva L; Corrado C; Fontana S; Flugy A; Rizzo A; De Leo G; Alessandro R
    Cell Commun Signal; 2015 Feb; 13():8. PubMed ID: 25644060
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Immunoreactivity of MIC2 (CD99) in acute myelogenous leukemia and related diseases.
    Zhang PJ; Barcos M; Stewart CC; Block AW; Sait S; Brooks JJ
    Mod Pathol; 2000 Apr; 13(4):452-8. PubMed ID: 10786814
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Release of angiopoietin-1 by primary human acute myelogenous leukemia cells is associated with mutations of nucleophosmin, increased by bone marrow stromal cells and possibly antagonized by high systemic angiopoietin-2 levels.
    Hatfield KJ; Hovland R; Øyan AM; Kalland KH; Ryningen A; Gjertsen BT; Bruserud Ø
    Leukemia; 2008 Feb; 22(2):287-93. PubMed ID: 17943167
    [TBL] [Abstract][Full Text] [Related]  

  • 76. SPG6 supports development of acute myeloid leukemia by regulating BMPR2-Smad-Bcl-2/Bcl-xl signaling.
    Chen J; Li C; Zhan R; Yin Y
    Biochem Biophys Res Commun; 2018 Jun; 501(1):220-225. PubMed ID: 29715457
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Disruption of Wnt/β-Catenin Exerts Antileukemia Activity and Synergizes with FLT3 Inhibition in
    Jiang X; Mak PY; Mu H; Tao W; Mak DH; Kornblau S; Zhang Q; Ruvolo P; Burks JK; Zhang W; McQueen T; Pan R; Zhou H; Konopleva M; Cortes J; Liu Q; Andreeff M; Carter BZ
    Clin Cancer Res; 2018 May; 24(10):2417-2429. PubMed ID: 29463558
    [No Abstract]   [Full Text] [Related]  

  • 78. Alteration Analysis of Bone Marrow Mesenchymal Stromal Cells from De Novo Acute Myeloid Leukemia Patients at Diagnosis.
    Desbourdes L; Javary J; Charbonnier T; Ishac N; Bourgeais J; Iltis A; Chomel JC; Turhan A; Guilloton F; Tarte K; Demattei MV; Ducrocq E; Rouleux-Bonnin F; Gyan E; Hérault O; Domenech J
    Stem Cells Dev; 2017 May; 26(10):709-722. PubMed ID: 28394200
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Bone marrow niche ATP levels determine leukemia-initiating cell activity via P2X7 in leukemic models.
    He X; Wan J; Yang X; Zhang X; Huang D; Li X; Zou Y; Chen C; Yu Z; Xie L; Zhang Y; Liu L; Li S; Zhao Y; Shao H; Yu Y; Zheng J
    J Clin Invest; 2021 Feb; 131(4):. PubMed ID: 33301426
    [TBL] [Abstract][Full Text] [Related]  

  • 80. DPP4
    Namburi S; Broxmeyer HE; Hong CS; Whiteside TL; Boyiadzis M
    Leukemia; 2021 Jul; 35(7):1925-1932. PubMed ID: 33139859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.