These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 23150100)
1. Predicting enzymatic function from global binding site descriptors. Volkamer A; Kuhn D; Rippmann F; Rarey M Proteins; 2013 Mar; 81(3):479-89. PubMed ID: 23150100 [TBL] [Abstract][Full Text] [Related]
2. Identification of catalytic residues from protein structure using support vector machine with sequence and structural features. Pugalenthi G; Kumar KK; Suganthan PN; Gangal R Biochem Biophys Res Commun; 2008 Mar; 367(3):630-4. PubMed ID: 18206645 [TBL] [Abstract][Full Text] [Related]
3. Classification of common functional loops of kinase super-families. Fernandez-Fuentes N; Hermoso A; Espadaler J; Querol E; Aviles FX; Oliva B Proteins; 2004 Aug; 56(3):539-55. PubMed ID: 15229886 [TBL] [Abstract][Full Text] [Related]
4. Proteochemometric recognition of stable kinase inhibition complexes using topological autocorrelation and support vector machines. Fernandez M; Ahmad S; Sarai A J Chem Inf Model; 2010 Jun; 50(6):1179-88. PubMed ID: 20524632 [TBL] [Abstract][Full Text] [Related]
5. Combining global and local measures for structure-based druggability predictions. Volkamer A; Kuhn D; Grombacher T; Rippmann F; Rarey M J Chem Inf Model; 2012 Feb; 52(2):360-72. PubMed ID: 22148551 [TBL] [Abstract][Full Text] [Related]
6. In silico prediction of major drug clearance pathways by support vector machines with feature-selected descriptors. Toshimoto K; Wakayama N; Kusama M; Maeda K; Sugiyama Y; Akiyama Y Drug Metab Dispos; 2014 Nov; 42(11):1811-9. PubMed ID: 25128502 [TBL] [Abstract][Full Text] [Related]
7. Prediction of active site cleft using support vector machines. Sonavane S; Chakrabarti P J Chem Inf Model; 2010 Dec; 50(12):2266-73. PubMed ID: 21080689 [TBL] [Abstract][Full Text] [Related]
8. A comprehensive update of the sequence and structure classification of kinases. Cheek S; Ginalski K; Zhang H; Grishin NV BMC Struct Biol; 2005 Mar; 5():6. PubMed ID: 15771780 [TBL] [Abstract][Full Text] [Related]
9. Relationship between global structural parameters and Enzyme Commission hierarchy: implications for function prediction. Boareto M; Yamagishi ME; Caticha N; Leite VB Comput Biol Chem; 2012 Oct; 40():15-9. PubMed ID: 22926016 [TBL] [Abstract][Full Text] [Related]
10. Improving protein secondary structure prediction using a multi-modal BP method. Qu W; Sui H; Yang B; Qian W Comput Biol Med; 2011 Oct; 41(10):946-59. PubMed ID: 21880310 [TBL] [Abstract][Full Text] [Related]
11. Predicting the state of cysteines based on sequence information. Guang X; Guo Y; Xiao J; Wang X; Sun J; Xiong W; Li M J Theor Biol; 2010 Dec; 267(3):312-8. PubMed ID: 20826168 [TBL] [Abstract][Full Text] [Related]
12. Prediction of protein subcellular localization. Yu CS; Chen YC; Lu CH; Hwang JK Proteins; 2006 Aug; 64(3):643-51. PubMed ID: 16752418 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method. Bagos PG; Liakopoulos TD; Hamodrakas SJ BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112 [TBL] [Abstract][Full Text] [Related]
14. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information. Kumar M; Gromiha MM; Raghava GP J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174 [TBL] [Abstract][Full Text] [Related]
15. Prediction of protein structure class by coupling improved genetic algorithm and support vector machine. Li ZC; Zhou XB; Lin YR; Zou XY Amino Acids; 2008 Oct; 35(3):581-90. PubMed ID: 18427714 [TBL] [Abstract][Full Text] [Related]
16. Application of support vector machine (SVM) for prediction toxic activity of different data sets. Zhao CY; Zhang HX; Zhang XY; Liu MC; Hu ZD; Fan BT Toxicology; 2006 Jan; 217(2-3):105-19. PubMed ID: 16213080 [TBL] [Abstract][Full Text] [Related]
17. PRINTR: prediction of RNA binding sites in proteins using SVM and profiles. Wang Y; Xue Z; Shen G; Xu J Amino Acids; 2008 Aug; 35(2):295-302. PubMed ID: 18235992 [TBL] [Abstract][Full Text] [Related]
18. ECS: an automatic enzyme classifier based on functional domain composition. Lu L; Qian Z; Cai YD; Li Y Comput Biol Chem; 2007 Jun; 31(3):226-32. PubMed ID: 17500036 [TBL] [Abstract][Full Text] [Related]
19. ECOH: an enzyme commission number predictor using mutual information and a support vector machine. Matsuta Y; Ito M; Tohsato Y Bioinformatics; 2013 Feb; 29(3):365-72. PubMed ID: 23220570 [TBL] [Abstract][Full Text] [Related]
20. QSAR method for prediction of protein-peptide binding affinity: application to MHC class I molecule HLA-A*0201. Zhao C; Zhang H; Luan F; Zhang R; Liu M; Hu Z; Fan B J Mol Graph Model; 2007 Jul; 26(1):246-54. PubMed ID: 17275373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]