BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 23150250)

  • 1. Epigenetic regulation of skeletal muscle development and differentiation.
    Bharathy N; Ling BM; Taneja R
    Subcell Biochem; 2013; 61():139-50. PubMed ID: 23150250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease.
    Sincennes MC; Brun CE; Rudnicki MA
    Stem Cells Transl Med; 2016 Mar; 5(3):282-90. PubMed ID: 26798058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts.
    Watanabe TM; Higuchi S; Kawauchi K; Tsukasaki Y; Ichimura T; Fujita H
    Biochem Biophys Res Commun; 2012 Feb; 418(4):742-7. PubMed ID: 22306010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone deacetylase inhibitor trichostatin A enhances myogenesis by coordinating muscle regulatory factors and myogenic repressors.
    Hagiwara H; Saito F; Masaki T; Ikeda M; Nakamura-Ohkuma A; Shimizu T; Matsumura K
    Biochem Biophys Res Commun; 2011 Nov; 414(4):826-31. PubMed ID: 22019851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of skeletal muscle stem cells through epigenetic mechanisms.
    Sousa-Victor P; Muñoz-Cánoves P; Perdiguero E
    Toxicol Mech Methods; 2011 May; 21(4):334-42. PubMed ID: 21495871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An unexpected role of TAFs and TRFs in skeletal muscle differentiation: switching core promoter complexes.
    Deato MD; Tjian R
    Cold Spring Harb Symp Quant Biol; 2008; 73():217-25. PubMed ID: 19022758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin modification and muscle differentiation.
    Yahi H; Philipot O; Guasconi V; Fritsch L; Ait-Si-Ali S
    Expert Opin Ther Targets; 2006 Dec; 10(6):923-34. PubMed ID: 17105377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic Library Screen Identifies Abexinostat as Novel Regulator of Adipocytic and Osteoblastic Differentiation of Human Skeletal (Mesenchymal) Stem Cells.
    Ali D; Hamam R; Alfayez M; Kassem M; Aldahmash A; Alajez NM
    Stem Cells Transl Med; 2016 Aug; 5(8):1036-47. PubMed ID: 27194745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal regulation of chromatin during myoblast differentiation.
    Harada A; Ohkawa Y; Imbalzano AN
    Semin Cell Dev Biol; 2017 Dec; 72():77-86. PubMed ID: 29079444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of cyclic strain for accelerated skeletal myogenic differentiation of mouse bone marrow-derived mesenchymal stromal cells with cell alignment.
    Egusa H; Kobayashi M; Matsumoto T; Sasaki J; Uraguchi S; Yatani H
    Tissue Eng Part A; 2013 Mar; 19(5-6):770-82. PubMed ID: 23072369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone chaperones cooperate to mediate Mef2-targeted transcriptional regulation during skeletal myogenesis.
    Yang JH; Choi JH; Jang H; Park JY; Han JW; Youn HD; Cho EJ
    Biochem Biophys Res Commun; 2011 Apr; 407(3):541-7. PubMed ID: 21414300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deconstruction of DNA methylation patterns during myogenesis reveals specific epigenetic events in the establishment of the skeletal muscle lineage.
    Carrió E; Díez-Villanueva A; Lois S; Mallona I; Cases I; Forn M; Peinado MA; Suelves M
    Stem Cells; 2015 Jun; 33(6):2025-36. PubMed ID: 25801824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pitx2c overexpression promotes cell proliferation and arrests differentiation in myoblasts.
    Martínez-Fernandez S; Hernández-Torres F; Franco D; Lyons GE; Navarro F; Aránega AE
    Dev Dyn; 2006 Nov; 235(11):2930-9. PubMed ID: 16958127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kbtbd5 is regulated by MyoD and restricted to the myogenic lineage.
    Bowlin KM; Embree LJ; Garry MG; Garry DJ; Shi X
    Differentiation; 2013; 86(4-5):184-91. PubMed ID: 24361185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions.
    Buckingham M; Relaix F
    Annu Rev Cell Dev Biol; 2007; 23():645-73. PubMed ID: 17506689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of skeletal muscle proteoglycans during myogenesis.
    Brandan E; Gutierrez J
    Matrix Biol; 2013 Aug; 32(6):289-97. PubMed ID: 23583522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells.
    Mourikis P; Gopalakrishnan S; Sambasivan R; Tajbakhsh S
    Development; 2012 Dec; 139(24):4536-48. PubMed ID: 23136394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination.
    Fazi F; Nervi C
    Cardiovasc Res; 2008 Sep; 79(4):553-61. PubMed ID: 18539629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenomic mechanisms of alcohol-induced impaired differentiation of skeletal muscle stem cells; role of Class IIA histone deacetylases.
    Adler K; Molina PE; Simon L
    Physiol Genomics; 2019 Sep; 51(9):471-479. PubMed ID: 31398085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic regulation of cardiovascular differentiation.
    Ohtani K; Dimmeler S
    Cardiovasc Res; 2011 Jun; 90(3):404-12. PubMed ID: 21372004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.