These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 23150262)

  • 21. Epigenetic modifications and diabetic nephropathy.
    Reddy MA; Park JT; Natarajan R
    Kidney Res Clin Pract; 2012 Sep; 31(3):139-50. PubMed ID: 26894019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epigenetic modifications: An important mechanism in diabetic disturbances.
    Rorbach-Dolata A; Kubis A; Piwowar A
    Postepy Hig Med Dosw (Online); 2017 Nov; 71(0):960-974. PubMed ID: 29225202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epigenetics and vascular diseases.
    Stratton MS; Farina FM; Elia L
    J Mol Cell Cardiol; 2019 Aug; 133():148-163. PubMed ID: 31211956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epigenetic signatures and vascular risk in type 2 diabetes: a clinical perspective.
    Paneni F; Costantino S; Volpe M; Lüscher TF; Cosentino F
    Atherosclerosis; 2013 Oct; 230(2):191-7. PubMed ID: 24075743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epigenetic Changes in Endothelial Progenitors as a Possible Cellular Basis for Glycemic Memory in Diabetic Vascular Complications.
    Rajasekar P; O'Neill CL; Eeles L; Stitt AW; Medina RJ
    J Diabetes Res; 2015; 2015():436879. PubMed ID: 26106624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The impact of chromatin modification on the development of chronic complications in patients with diabetes].
    Wegner M; Pioruńska-Stolzmann M; Jagodziński PP
    Postepy Hig Med Dosw (Online); 2015 Aug; 69():964-8. PubMed ID: 26400882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells.
    Pirola L; Balcerczyk A; Tothill RW; Haviv I; Kaspi A; Lunke S; Ziemann M; Karagiannis T; Tonna S; Kowalczyk A; Beresford-Smith B; Macintyre G; Kelong M; Hongyu Z; Zhu J; El-Osta A
    Genome Res; 2011 Oct; 21(10):1601-15. PubMed ID: 21890681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The epigenetic regulation of podocyte function in diabetes.
    Majumder S; Advani A
    J Diabetes Complications; 2015; 29(8):1337-44. PubMed ID: 26344726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel insights into DNA methylation and its critical implications in diabetic vascular complications.
    Zheng J; Cheng J; Zhang Q; Xiao X
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28183874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glucose-independent persistence of PAI-1 gene expression and H3K4 tri-methylation in type 1 diabetic mouse endothelium: implication in metabolic memory.
    Takizawa F; Mizutani S; Ogawa Y; Sawada N
    Biochem Biophys Res Commun; 2013 Mar; 433(1):66-72. PubMed ID: 23454124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High levels of glucose induce "metabolic memory" in cardiomyocyte via epigenetic histone H3 lysine 9 methylation.
    Yu XY; Geng YJ; Liang JL; Zhang S; Lei HP; Zhong SL; Lin QX; Shan ZX; Lin SG; Li Y
    Mol Biol Rep; 2012 Sep; 39(9):8891-8. PubMed ID: 22707199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic memory and chronic diabetes complications: potential role for epigenetic mechanisms.
    Intine RV; Sarras MP
    Curr Diab Rep; 2012 Oct; 12(5):551-9. PubMed ID: 22760445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic memory: Evolving concepts.
    Misra A; Bloomgarden Z
    J Diabetes; 2018 Mar; 10(3):186-187. PubMed ID: 29091343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of epigenetics in kidney cell biology.
    Li LX; Agborbesong E; Zhang L; Li X
    Methods Cell Biol; 2019; 153():255-278. PubMed ID: 31395383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epigenetic regulation in human melanoma: past and future.
    Sarkar D; Leung EY; Baguley BC; Finlay GJ; Askarian-Amiri ME
    Epigenetics; 2015; 10(2):103-21. PubMed ID: 25587943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glycemic memories and the epigenetic component of diabetic nephropathy.
    Keating ST; El-Osta A
    Curr Diab Rep; 2013 Aug; 13(4):574-81. PubMed ID: 23639991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epigenetics: deciphering its role in diabetes and its chronic complications.
    Villeneuve LM; Reddy MA; Natarajan R
    Clin Exp Pharmacol Physiol; 2011 Jul; 38(7):451-9. PubMed ID: 21309809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox Components: Key Regulators of Epigenetic Modifications in Plants.
    R M SK; Wang Y; Zhang X; Cheng H; Sun L; He S; Hao F
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32093110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Epigenetics and long-term memory formation].
    Grinkevich LN
    Ross Fiziol Zh Im I M Sechenova; 2012 May; 98(5):553-74. PubMed ID: 22838191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic memory: mechanisms and implications for diabetic vasculopathies.
    Zhang E; Wu Y
    Sci China Life Sci; 2014 Aug; 57(8):845-51. PubMed ID: 25104458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.