These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23150366)

  • 1. Analysis of optokinetic response in zebrafish by computer-based eye tracking.
    Huber-Reggi SP; Mueller KP; Neuhauss SC
    Methods Mol Biol; 2013; 935():139-60. PubMed ID: 23150366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrast sensitivity, spatial and temporal tuning of the larval zebrafish optokinetic response.
    Rinner O; Rick JM; Neuhauss SC
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):137-42. PubMed ID: 15623766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the optokinetic response of zebrafish larvae.
    Brockerhoff SE
    Nat Protoc; 2006; 1(5):2448-51. PubMed ID: 17406490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Analysis of adult zebrafish OKR behavior].
    Huang YB; Zou SQ; Yin W; Wang K; Wang H; Hu B
    Yi Chuan; 2012 Sep; 34(9):1193-201. PubMed ID: 23017461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative measurements of the optokinetic response in adult fish.
    Mueller KP; Neuhauss SC
    J Neurosci Methods; 2010 Jan; 186(1):29-34. PubMed ID: 19900474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of eye movements in the zebrafish (Danio rerio).
    Easter SS; Nicola GN
    Dev Psychobiol; 1997 Dec; 31(4):267-76. PubMed ID: 9413674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positive or negative feedback of optokinetic signals: degree of the misrouted optic flow determines system dynamics of human ocular motor behavior.
    Chen CC; Bockisch CJ; Olasagasti I; Weber KP; Straumann D; Huang MY
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2297-306. PubMed ID: 24595381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A behavioral assay to measure responsiveness of zebrafish to changes in light intensities.
    Emran F; Rihel J; Dowling JE
    J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-based analysis of the optokinetic response in zebrafish larvae.
    Hodel C; Neuhauss SC
    CSH Protoc; 2008 Mar; 2008():pdb.prot4961. PubMed ID: 21356786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral genetic approaches to visual system development and function in zebrafish.
    Neuhauss SC
    J Neurobiol; 2003 Jan; 54(1):148-60. PubMed ID: 12486702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An open-source method to analyze optokinetic reflex responses in larval zebrafish.
    Scheetz SD; Shao E; Zhou Y; Cario CL; Bai Q; Burton EA
    J Neurosci Methods; 2018 Jan; 293():329-337. PubMed ID: 29042258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the optokinetic response to study visual function of zebrafish.
    Zou SQ; Yin W; Zhang MJ; Hu CR; Huang YB; Hu B
    J Vis Exp; 2010 Feb; (36):. PubMed ID: 20125082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic localization and genetic perturbation of saccade-generating neurons in zebrafish.
    Schoonheim PJ; Arrenberg AB; Del Bene F; Baier H
    J Neurosci; 2010 May; 30(20):7111-20. PubMed ID: 20484654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3D-Printed and Freely Available Device to Measure the Zebrafish Optokinetic Response Before and After Injury.
    Hermans A; Tajnai S; Tieman A; Young S; Franklin A; Horutz M; Henle SJ
    Zebrafish; 2024 Apr; 21(2):144-148. PubMed ID: 38621210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated visual tracking for studying the ontogeny of zebrafish swimming.
    Fontaine E; Lentink D; Kranenbarg S; Müller UK; van Leeuwen JL; Barr AH; Burdick JW
    J Exp Biol; 2008 Apr; 211(Pt 8):1305-16. PubMed ID: 18375855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oculomotor instabilities in zebrafish mutant belladonna: a behavioral model for congenital nystagmus caused by axonal misrouting.
    Huang YY; Rinner O; Hedinger P; Liu SC; Neuhauss SC
    J Neurosci; 2006 Sep; 26(39):9873-80. PubMed ID: 17005851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unravelling Stimulus Direction Dependency of Visual Acuity in Larval Zebrafish by Consistent Eye Displacements Upon Optokinetic Stimulation.
    Bögli SY; Afthinos M; Bertolini G; Straumann D; Huang MY
    Invest Ophthalmol Vis Sci; 2016 Apr; 57(4):1721-7. PubMed ID: 27064392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual larvae of the zebrafish mutant belladonna display multiple infantile nystagmus-like waveforms that are influenced by viewing conditions.
    Huber-Reggi SP; Mueller KP; Straumann D; Huang MY; Neuhauss SC
    Invest Ophthalmol Vis Sci; 2014 May; 55(6):3971-8. PubMed ID: 24867578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evoking and tracking zebrafish eye movement in multiple larvae with ZebEyeTrack.
    Dehmelt FA; von Daranyi A; Leyden C; Arrenberg AB
    Nat Protoc; 2018 Jul; 13(7):1539-1568. PubMed ID: 29988103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative approach to study the adaptation of rhythmic eye movements and the resulting tonic eye deviation in larval zebrafish.
    Lin TF; Huang MY
    J Neurosci Res; 2023 Sep; 101(9):1504-1518. PubMed ID: 37313595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.