These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Urwyler S; Nyfeler Y; Ragaz C; Lee H; Mueller LN; Aebersold R; Hilbi H Traffic; 2009 Jan; 10(1):76-87. PubMed ID: 18980612 [TBL] [Abstract][Full Text] [Related]
7. The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Ragaz C; Pietsch H; Urwyler S; Tiaden A; Weber SS; Hilbi H Cell Microbiol; 2008 Dec; 10(12):2416-33. PubMed ID: 18673369 [TBL] [Abstract][Full Text] [Related]
8. Swart AL; Harrison CF; Eichinger L; Steinert M; Hilbi H Front Cell Infect Microbiol; 2018; 8():61. PubMed ID: 29552544 [TBL] [Abstract][Full Text] [Related]
9. The Legionella longbeachae Icm/Dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum interactions. Dolinsky S; Haneburger I; Cichy A; Hannemann M; Itzen A; Hilbi H Infect Immun; 2014 Oct; 82(10):4021-33. PubMed ID: 25024371 [TBL] [Abstract][Full Text] [Related]
10. Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. Brombacher E; Urwyler S; Ragaz C; Weber SS; Kami K; Overduin M; Hilbi H J Biol Chem; 2009 Feb; 284(8):4846-56. PubMed ID: 19095644 [TBL] [Abstract][Full Text] [Related]
11. Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors. Ge J; Shao F Cell Microbiol; 2011 Dec; 13(12):1870-80. PubMed ID: 21981078 [TBL] [Abstract][Full Text] [Related]
12. Quantitative Imaging Flow Cytometry of Legionella-Infected Dictyostelium Amoebae Reveals the Impact of Retrograde Trafficking on Pathogen Vacuole Composition. Welin A; Weber S; Hilbi H Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602783 [TBL] [Abstract][Full Text] [Related]
13. Anchors for effectors: subversion of phosphoinositide lipids by legionella. Hilbi H; Weber S; Finsel I Front Microbiol; 2011; 2():91. PubMed ID: 21833330 [TBL] [Abstract][Full Text] [Related]
14. Exploiting the ubiquitin and phosphoinositide pathways by the Legionella pneumophila effector, SidC. Wasilko DJ; Mao Y Curr Genet; 2016 Feb; 62(1):105-8. PubMed ID: 26433729 [TBL] [Abstract][Full Text] [Related]
15. Formation of the Bärlocher K; Welin A; Hilbi H Front Cell Infect Microbiol; 2017; 7():482. PubMed ID: 29226112 [TBL] [Abstract][Full Text] [Related]
16. Purification of pathogen vacuoles from Legionella-infected phagocytes. Hoffmann C; Finsel I; Hilbi H J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760420 [TBL] [Abstract][Full Text] [Related]
17. Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. Steiner B; Weber S; Hilbi H Int J Med Microbiol; 2018 Jan; 308(1):49-57. PubMed ID: 28865995 [TBL] [Abstract][Full Text] [Related]
19. Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila. Chen J; Reyes M; Clarke M; Shuman HA Cell Microbiol; 2007 Jul; 9(7):1660-71. PubMed ID: 17371403 [TBL] [Abstract][Full Text] [Related]
20. Identification of legionella effectors using bioinformatic approaches. Segal G Methods Mol Biol; 2013; 954():595-602. PubMed ID: 23150423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]