These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 23150462)

  • 21. Renal stone risk in a simulated microgravity environment: impact of treadmill exercise with lower body negative pressure.
    Monga M; Macias B; Groppo E; Kostelec M; Hargens A
    J Urol; 2006 Jul; 176(1):127-31. PubMed ID: 16753386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Skeletal responses to space flight and the bed rest analog: a review.
    LeBlanc AD; Spector ER; Evans HJ; Sibonga JD
    J Musculoskelet Neuronal Interact; 2007; 7(1):33-47. PubMed ID: 17396004
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Musculoskeletal adaptation to mechanical forces on Earth and in space.
    Whalen R
    Physiologist; 1993; 36(1 Suppl):S127-30. PubMed ID: 11537418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 21 Days head-down bed rest induces weakening of cell-mediated immunity - Some spaceflight findings confirmed in a ground-based analog.
    Kelsen J; Bartels LE; Dige A; Hvas CL; Frings-Meuthen P; Boehme G; Thomsen MK; Fenger-Grøn M; Dahlerup JF
    Cytokine; 2012 Aug; 59(2):403-9. PubMed ID: 22595648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic review of countermeasures to minimise physiological changes and risk of injury to the lumbopelvic area following long-term microgravity.
    Winnard A; Nasser M; Debuse D; Stokes M; Evetts S; Wilkinson M; Hides J; Caplan N
    Musculoskelet Sci Pract; 2017 Jan; 27 Suppl 1():S5-S14. PubMed ID: 28173932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. WISE-2005: supine treadmill exercise within lower body negative pressure and flywheel resistive exercise as a countermeasure to bed rest-induced bone loss in women during 60-day simulated microgravity.
    Smith SM; Zwart SR; Heer M; Lee SM; Baecker N; Meuche S; Macias BR; Shackelford LC; Schneider S; Hargens AR
    Bone; 2008 Mar; 42(3):572-81. PubMed ID: 18249055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hindlimb unloading: rodent analog for microgravity.
    Globus RK; Morey-Holton E
    J Appl Physiol (1985); 2016 May; 120(10):1196-206. PubMed ID: 26869711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Countermeasure for space flight effects on immune system: nutritional nucleotides.
    Kulkarni AD; Yamauchi K; Sundaresan A; Ramesh GT; Pellis NR
    Gravit Space Biol Bull; 2005 Jun; 18(2):101-2. PubMed ID: 16044627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nutritional interventions during bed rest and spaceflight: prevention of muscle mass and strength loss, bone resorption, glucose intolerance, and cardiovascular problems.
    Gao R; Chilibeck PD
    Nutr Res; 2020 Oct; 82():11-24. PubMed ID: 32890860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Kidney stone formation during space flight and long-term bed rest].
    Okada A; Ichikawa J; Tozawa K
    Clin Calcium; 2011 Oct; 21(10):1505-10. PubMed ID: 21960236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Space flight and the skeleton: lessons for the earthbound.
    Bikle DD; Halloran BP; Morey-Holton E
    Endocrinologist; 1997; 7(1):10-22. PubMed ID: 11540416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mimicking a Space Mission to Mars Using Hindlimb Unloading and Partial Weight Bearing in Rats.
    Mortreux M; Riveros D; Bouxsein ML; Rutkove SB
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31009001
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peripheral effector mechanism hypothesis of postflight cardiovascular dysfunction.
    Zhang LF; Yu ZB; Ma J; Mao QW
    Aviat Space Environ Med; 2001 Jun; 72(6):567-75. PubMed ID: 11396563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Microgravity and weightlessness: experimental model accelerates nutritional pathology].
    Genton L; Dupertuis Y; Maillet A; Beaufrere B; Di Nardo P; Elia M; Pichard C
    Rev Med Suisse Romande; 2002 Jul; 122(7):339-43. PubMed ID: 12212490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the mir space station.
    Smith SM; Wastney ME; O'Brien KO; Morukov BV; Larina IM; Abrams SA; Davis-Street JE; Oganov V; Shackelford LC
    J Bone Miner Res; 2005 Feb; 20(2):208-18. PubMed ID: 15647814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of treadmill exercise in a lower body negative pressure chamber as a countermeasure for weightlessness-induced bone loss: a bed rest study with identical twins.
    Smith SM; Davis-Street JE; Fesperman JV; Calkins DS; Bawa M; Macias BR; Meyer RS; Hargens AR
    J Bone Miner Res; 2003 Dec; 18(12):2223-30. PubMed ID: 14672358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exercise and pharmacological countermeasures for bone loss during long-duration space flight.
    Cavanagh PR; Licata AA; Rice AJ
    Gravit Space Biol Bull; 2005 Jun; 18(2):39-58. PubMed ID: 16038092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artificial gravity.
    Scott WB
    Aviat Week Space Technol; 2005 Apr; 162(17):62-4. PubMed ID: 15852559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hindlimb unloading in adult rats using an alternative tail harness design.
    Knox M; Fluckey JD; Bennett P; Peterson CA; Dupont-Versteegden EE
    Aviat Space Environ Med; 2004 Aug; 75(8):692-6. PubMed ID: 15328787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human and rodent ground-based models of space flight environments.
    Schmitt D; Angerer O
    Gravit Space Biol Bull; 2001 Jun; 14(2):65-7. PubMed ID: 11865870
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.