BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23150616)

  • 1. In vivo confocal intrinsic optical signal identification of localized retinal dysfunction.
    Zhang QX; Lu RW; Curcio CA; Yao XC
    Invest Ophthalmol Vis Sci; 2012 Dec; 53(13):8139-45. PubMed ID: 23150616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo confocal imaging of fast intrinsic optical signals correlated with frog retinal activation.
    Zhang QX; Lu RW; Li YG; Yao XC
    Opt Lett; 2011 Dec; 36(23):4692-4. PubMed ID: 22139286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic optical signal imaging of retinal physiology: a review.
    Yao X; Wang B
    J Biomed Opt; 2015 Sep; 20(9):090901. PubMed ID: 26405819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-speed line-scan confocal imaging of stimulus-evoked intrinsic optical signals in the retina.
    Li YG; Liu L; Amthor F; Yao XC
    Opt Lett; 2010 Feb; 35(3):426-8. PubMed ID: 20125743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional imaging of retinal photoreceptors and inner neurons using stimulus-evoked intrinsic optical signals.
    Yao XC; Li YC
    Methods Mol Biol; 2012; 884():277-85. PubMed ID: 22688714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High spatiotemporal resolution imaging of fast intrinsic optical signals activated by retinal flicker stimulation.
    Li YG; Zhang QX; Liu L; Amthor FR; Yao XC
    Opt Express; 2010 Mar; 18(7):7210-8. PubMed ID: 20389742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microlens array recording of localized retinal responses.
    Zhang QX; Wang JY; Liu L; Yao XC
    Opt Lett; 2010 Nov; 35(22):3838-40. PubMed ID: 21082014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas.
    Wang B; Lu Y; Yao X
    J Biomed Opt; 2016 Sep; 21(9):96010. PubMed ID: 27653936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional optical coherence tomography enables in vivo physiological assessment of retinal rod and cone photoreceptors.
    Zhang Q; Lu R; Wang B; Messinger JD; Curcio CA; Yao X
    Sci Rep; 2015 Apr; 5():9595. PubMed ID: 25901915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Topographic mapping of retinal function with a scanning laser ophthalmoscope and multifocal electroretinography using short M-sequences].
    Rudolph G; Bechmann M; Berninger T; Kutschbach E; Held U; Tornow RP; Kalpadakis P; Zol'nikova IV; Shamshinova AM
    Vestn Oftalmol; 2001; 117(2):32-5. PubMed ID: 11510163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo super-resolution imaging of transient retinal phototropism evoked by oblique light stimulation.
    Lu Y; Liu C; Yao X
    J Biomed Opt; 2018 May; 23(5):1-4. PubMed ID: 29752801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional intrinsic optical signal imaging for objective optoretinography of human photoreceptors.
    Son T; Kim TH; Ma G; Kim H; Yao X
    Exp Biol Med (Maywood); 2021 Mar; 246(6):639-643. PubMed ID: 33307802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. En face optical coherence tomography of transient light response at photoreceptor outer segments in living frog eyecup.
    Wang B; Lu R; Zhang Q; Jiang Y; Yao X
    Opt Lett; 2013 Nov; 38(22):4526-9. PubMed ID: 24322065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution retinal imaging of cone-rod dystrophy.
    Wolfing JI; Chung M; Carroll J; Roorda A; Williams DR
    Ophthalmology; 2006 Jun; 113(6):1019.e1. PubMed ID: 16650474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal Imaging Using a Confocal Scanning Laser Ophthalmoscope-Based High-Magnification Module.
    Konstantinou EK; Mendonça LSM; Braun P; Monahan KM; Mehta N; Gendelman I; Levine ES; Baumal CR; Witkin AJ; Duker JS; Waheed NK
    Ophthalmol Retina; 2021 May; 5(5):438-449. PubMed ID: 32861857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo imaging of intrinsic optical signals in chicken retina with functional optical coherence tomography.
    Moayed AA; Hariri S; Choh V; Bizheva K
    Opt Lett; 2011 Dec; 36(23):4575-7. PubMed ID: 22139247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT.
    Srinivasan VJ; Chen Y; Duker JS; Fujimoto JG
    Opt Express; 2009 Mar; 17(5):3861-77. PubMed ID: 19259228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast intrinsic optical signal correlates with activation phase of phototransduction in retinal photoreceptors.
    Yao X; Kim TH
    Exp Biol Med (Maywood); 2020 Jul; 245(13):1087-1095. PubMed ID: 32558598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic optical signal imaging of retinal activation.
    Yao XC
    Jpn J Ophthalmol; 2009 Jul; 53(4):327-33. PubMed ID: 19763749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo optoretinography of phototransduction activation and energy metabolism in retinal photoreceptors.
    Ma G; Son T; Kim TH; Yao X
    J Biophotonics; 2021 May; 14(5):e202000462. PubMed ID: 33547871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.