These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 23150784)

  • 1. Biomaterial evolution parallels behavioral innovation in the origin of orb-like spider webs.
    Blackledge TA; Kuntner M; Marhabaie M; Leeper TC; Agnarsson I
    Sci Rep; 2012; 2():833. PubMed ID: 23150784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential origin in the high performance properties of orb spider dragline silk.
    Blackledge TA; Pérez-Rigueiro J; Plaza GR; Perea B; Navarro A; Guinea GV; Elices M
    Sci Rep; 2012; 2():782. PubMed ID: 23110251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Duplication and concerted evolution of MiSp-encoding genes underlie the material properties of minor ampullate silks of cobweb weaving spiders.
    Vienneau-Hathaway JM; Brassfield ER; Lane AK; Collin MA; Correa-Garhwal SM; Clarke TH; Schwager EE; Garb JE; Hayashi CY; Ayoub NA
    BMC Evol Biol; 2017 Mar; 17(1):78. PubMed ID: 28288560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioural and biomaterial coevolution in spider orb webs.
    Sensenig A; Agnarsson I; Blackledge TA
    J Evol Biol; 2010 Sep; 23(9):1839-56. PubMed ID: 20629854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Spider Glue: Long Read Scaffolding for Extreme Length and Repetitious Silk Family Genes AgSp1 and AgSp2 with Insights into Functional Adaptation.
    Stellwagen SD; Renberg RL
    G3 (Bethesda); 2019 Jun; 9(6):1909-1919. PubMed ID: 30975702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multicomponent nature underlies the extraordinary mechanical properties of spider dragline silk.
    Kono N; Nakamura H; Mori M; Yoshida Y; Ohtoshi R; Malay AD; Pedrazzoli Moran DA; Tomita M; Numata K; Arakawa K
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34312234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein composition correlates with the mechanical properties of spider ( Argiope trifasciata ) dragline silk.
    Marhabaie M; Leeper TC; Blackledge TA
    Biomacromolecules; 2014 Jan; 15(1):20-9. PubMed ID: 24313814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstructing web evolution and spider diversification in the molecular era.
    Blackledge TA; Scharff N; Coddington JA; Szüts T; Wenzel JW; Hayashi CY; Agnarsson I
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5229-34. PubMed ID: 19289848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spidroin profiling of cribellate spiders provides insight into the evolution of spider prey capture strategies.
    Kono N; Nakamura H; Mori M; Tomita M; Arakawa K
    Sci Rep; 2020 Sep; 10(1):15721. PubMed ID: 32973264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular structures of major ampullate silk proteins of the wasp spider, Argiope bruennichi: a second blueprint for synthesizing de novo silk.
    Zhang Y; Zhao AC; Sima YH; Lu C; Xiang ZH; Nakagaki M
    Comp Biochem Physiol B Biochem Mol Biol; 2013 Mar; 164(3):151-8. PubMed ID: 23262065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete gene sequence and mechanical property of the fourth type of major ampullate silk protein.
    Wen R; Wang S; Wang K; Yang D; Zan X; Meng Q
    Acta Biomater; 2023 Jan; 155():282-291. PubMed ID: 36427684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Punctuated evolution of viscid silk in spider orb webs supported by mechanical behavior of wet cribellate silk.
    Piorkowski D; Blackledge TA
    Naturwissenschaften; 2017 Aug; 104(7-8):67. PubMed ID: 28752413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider.
    Agnarsson I; Kuntner M; Blackledge TA
    PLoS One; 2010 Sep; 5(9):e11234. PubMed ID: 20856804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental conditions impinge on dragline silk protein composition.
    Guehrs KH; Schlott B; Grosse F; Weisshart K
    Insect Mol Biol; 2008 Sep; 17(5):553-64. PubMed ID: 18828841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How did the spider cross the river? Behavioral adaptations for river-bridging webs in Caerostris darwini (Araneae: Araneidae).
    Gregorič M; Agnarsson I; Blackledge TA; Kuntner M
    PLoS One; 2011; 6(10):e26847. PubMed ID: 22046378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spider orb webs rely on radial threads to absorb prey kinetic energy.
    Sensenig AT; Lorentz KA; Kelly SP; Blackledge TA
    J R Soc Interface; 2012 Aug; 9(73):1880-91. PubMed ID: 22431738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers.
    Boutry C; Blackledge TA
    J Exp Biol; 2010 Oct; 213(Pt 20):3505-14. PubMed ID: 20889831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse formulas for spider dragline fibers demonstrated by molecular and mechanical characterization of spitting spider silk.
    Correa-Garhwal SM; Garb JE
    Biomacromolecules; 2014 Dec; 15(12):4598-605. PubMed ID: 25340514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercontraction of dragline silk spun by lynx spiders (Oxyopidae).
    Pérez-Rigueiro J; Plaza GR; Torres FG; Hijar A; Hayashi C; Perea GB; Elices M; Guinea GV
    Int J Biol Macromol; 2010 Jun; 46(5):555-7. PubMed ID: 20359492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transcriptome of Darwin's bark spider silk glands predicts proteins contributing to dragline silk toughness.
    Garb JE; Haney RA; Schwager EE; Gregorič M; Kuntner M; Agnarsson I; Blackledge TA
    Commun Biol; 2019; 2():275. PubMed ID: 31372514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.