These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23150903)

  • 1. Comparison of walking overground and in a Computer Assisted Rehabilitation Environment (CAREN) in individuals with and without transtibial amputation.
    Gates DH; Darter BJ; Dingwell JB; Wilken JM
    J Neuroeng Rehabil; 2012 Nov; 9():81. PubMed ID: 23150903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic stability of superior vs. inferior body segments in individuals with transtibial amputation walking in destabilizing environments.
    Beurskens R; Wilken JM; Dingwell JB
    J Biomech; 2014 Sep; 47(12):3072-9. PubMed ID: 25064425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic stability of individuals with transtibial amputation walking in destabilizing environments.
    Beurskens R; Wilken JM; Dingwell JB
    J Biomech; 2014 May; 47(7):1675-81. PubMed ID: 24679710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transtibial amputee gait during slope walking with the unity suspension system.
    Gholizadeh H; Lemaire ED; Sinitski EH
    Gait Posture; 2018 Sep; 65():205-212. PubMed ID: 30558933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of adding a virtual reality environment to different modes of treadmill walking.
    Sloot LH; van der Krogt MM; Harlaar J
    Gait Posture; 2014 Mar; 39(3):939-45. PubMed ID: 24412269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The comparison of stepping responses following perturbations applied to pelvis during overground and treadmill walking.
    Zadravec M; Olenšek A; Matjačić Z
    Technol Health Care; 2017 Aug; 25(4):781-790. PubMed ID: 28582936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of angular lumbar spine and pelvis kinematics during treadmill and overground locomotion.
    Vogt L; Pfeifer K; Banzer W
    Clin Biomech (Bristol, Avon); 2002 Feb; 17(2):162-5. PubMed ID: 11832267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontal plane dynamic margins of stability in individuals with and without transtibial amputation walking on a loose rock surface.
    Gates DH; Scott SJ; Wilken JM; Dingwell JB
    Gait Posture; 2013 Sep; 38(4):570-5. PubMed ID: 23481866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maintaining stable transtibial amputee gait on level and simulated uneven conditions in a virtual environment.
    Sinitski EH; Lemaire ED; Baddour N; Besemann M; Dudek N; Hebert JS
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):40-48. PubMed ID: 31349766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing aftereffects after split-belt treadmill walking and unilateral stepping.
    Huynh KV; Sarmento CH; Roemmich RT; Stegemöller EL; Hass CJ
    Med Sci Sports Exerc; 2014 Jul; 46(7):1392-9. PubMed ID: 24389526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. User-driven treadmill walking promotes healthy step width after stroke.
    Donlin MC; Ray NT; Higginson JS
    Gait Posture; 2021 May; 86():256-259. PubMed ID: 33812294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adult age differences in familiarization to treadmill walking within virtual environments.
    Schellenbach M; Lövdén M; Verrel J; Krüger A; Lindenberger U
    Gait Posture; 2010 Mar; 31(3):295-9. PubMed ID: 20031413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects.
    Riley PO; Paolini G; Della Croce U; Paylo KW; Kerrigan DC
    Gait Posture; 2007 Jun; 26(1):17-24. PubMed ID: 16905322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fixed and self-paced treadmill walking for able-bodied and transtibial amputees in a multi-terrain virtual environment.
    Sinitski EH; Lemaire ED; Baddour N; Besemann M; Dudek NL; Hebert JS
    Gait Posture; 2015 Feb; 41(2):568-73. PubMed ID: 25661003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method for evoking a trip-like response using a treadmill-based perturbation during locomotion.
    Sessoms PH; Wyatt M; Grabiner M; Collins JD; Kingsbury T; Thesing N; Kaufman K
    J Biomech; 2014 Jan; 47(1):277-80. PubMed ID: 24268756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normative 3D gait data of healthy adults walking at three different speeds on an instrumented treadmill in virtual reality.
    Senden R; Marcellis R; Willems P; Witlox M; Meijer K
    Data Brief; 2024 Apr; 53():110230. PubMed ID: 38445200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Margins of stability in young adults with traumatic transtibial amputation walking in destabilizing environments.
    Beltran EJ; Dingwell JB; Wilken JM
    J Biomech; 2014 Mar; 47(5):1138-43. PubMed ID: 24444777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation.
    Yoon J; Park HS; Damiano DL
    J Neuroeng Rehabil; 2012 Aug; 9():62. PubMed ID: 22929169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.