These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23151065)

  • 1. Microscopic rates of peptide-phospholipid bilayer interactions from single-molecule residence times.
    Myers GA; Gacek DA; Peterson EM; Fox CB; Harris JM
    J Am Chem Soc; 2012 Dec; 134(48):19652-60. PubMed ID: 23151065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule fluorescence imaging of peptide binding to supported lipid bilayers.
    Fox CB; Wayment JR; Myers GA; Endicott SK; Harris JM
    Anal Chem; 2009 Jul; 81(13):5130-8. PubMed ID: 19480398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface.
    Voglino L; McIntosh TJ; Simon SA
    Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of helix nucleation in the kinetics of binding of mastoparan X to phospholipid bilayers.
    Tang J; Signarvic RS; DeGrado WF; Gai F
    Biochemistry; 2007 Dec; 46(48):13856-63. PubMed ID: 17994771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding is not required for bilayer insertion: replica exchange simulations of an alpha-helical peptide with an explicit lipid bilayer.
    Nymeyer H; Woolf TB; Garcia AE
    Proteins; 2005 Jun; 59(4):783-90. PubMed ID: 15828005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of fusogenic synthetic peptide with phospholipid bilayers: orientation of the peptide alpha-helix and binding isotherm.
    Ishiguro R; Matsumoto M; Takahashi S
    Biochemistry; 1996 Apr; 35(15):4976-83. PubMed ID: 8664290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insertion of magainin into the lipid bilayer detected using lipid photolabels.
    Jo E; Blazyk J; Boggs JM
    Biochemistry; 1998 Sep; 37(39):13791-9. PubMed ID: 9753468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman Microscopy Investigation of GLP-1 Peptide Association with Supported Phospholipid Bilayers.
    Bryce DA; Kitt JP; Harris JM
    Langmuir; 2021 Dec; 37(49):14265-14274. PubMed ID: 34856805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of ellipsometry, laser scanning microscopy and Z-scan fluorescence correlation spectroscopy elucidating interaction of cryptdin-4 with supported phospholipid bilayers.
    Miszta A; Machán R; Benda A; Ouellette AJ; Hermens WT; Hof M
    J Pept Sci; 2008 Apr; 14(4):503-9. PubMed ID: 17994618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes.
    Tiriveedhi V; Butko P
    Biochemistry; 2007 Mar; 46(12):3888-95. PubMed ID: 17338552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of synthetic peptides corresponding to hepatitis G virus (HGV/GBV-C) E2 structural protein with phospholipid vesicles.
    Larios C; Christiaens B; Gómara MJ; Alsina MA; Haro I
    FEBS J; 2005 May; 272(10):2456-66. PubMed ID: 15885095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of membrane active peptides with planar supported bilayers: an impedance spectroscopy study.
    Lin J; Motylinski J; Krauson AJ; Wimley WC; Searson PC; Hristova K
    Langmuir; 2012 Apr; 28(14):6088-96. PubMed ID: 22416892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane.
    Reshetnyak YK; Andreev OA; Segala M; Markin VS; Engelman DM
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15340-5. PubMed ID: 18829441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of the designed antimicrobial peptide MB21 and truncated dermaseptin S3 with lipid bilayers: molecular-dynamics simulations.
    Shepherd CM; Vogel HJ; Tieleman DP
    Biochem J; 2003 Feb; 370(Pt 1):233-43. PubMed ID: 12423203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can a carbon nanotube pierce through a phospholipid bilayer?
    Pogodin S; Baulin VA
    ACS Nano; 2010 Sep; 4(9):5293-300. PubMed ID: 20809585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The activation energy for insertion of transmembrane alpha-helices is dependent on membrane composition.
    Meijberg W; Booth PJ
    J Mol Biol; 2002 Jun; 319(3):839-53. PubMed ID: 12054874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic transitions of membrane-active peptides.
    Grage SL; Afonin S; Ulrich AS
    Methods Mol Biol; 2010; 618():183-207. PubMed ID: 20094866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.