These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23151070)

  • 1. Measuring uptake dynamics of multiple identifiable carbon nanotube species via high-speed confocal Raman imaging of live cells.
    Kang JW; Nguyen FT; Lue N; Dasari RR; Heller DA
    Nano Lett; 2012 Dec; 12(12):6170-4. PubMed ID: 23151070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman studies of new carbon nanotube sample types.
    Doorn SK
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1023-34. PubMed ID: 16108422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
    Dillon AC; Yudasaka M; Dresselhaus MS
    J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminescent single-walled carbon nanotube-sensitized europium nanoprobes for cellular imaging.
    Avti PK; Sitharaman B
    Int J Nanomedicine; 2012; 7():1953-64. PubMed ID: 22619533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy.
    Slipchenko MN; Le TT; Chen H; Cheng JX
    J Phys Chem B; 2009 May; 113(21):7681-6. PubMed ID: 19422201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues.
    Biris AS; Galanzha EI; Li Z; Mahmood M; Xu Y; Zharov VP
    J Biomed Opt; 2009; 14(2):021006. PubMed ID: 19405719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free live-cell imaging with confocal Raman microscopy.
    Klein K; Gigler AM; Aschenbrenner T; Monetti R; Bunk W; Jamitzky F; Morfill G; Stark RW; Schlegel J
    Biophys J; 2012 Jan; 102(2):360-8. PubMed ID: 22339873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysing one isolated single walled carbon nanotube in the near-field domain with selective nanovolume Raman spectroscopy.
    Atalay H; Lefrant S
    J Nanosci Nanotechnol; 2004 Sep; 4(7):749-61. PubMed ID: 15570957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarized raman spectroscopy on isolated single-wall carbon nanotubes.
    Duesberg GS; Loa I; Burghard M; Syassen K; Roth S
    Phys Rev Lett; 2000 Dec; 85(25):5436-9. PubMed ID: 11136015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the intracellular distribution of carbon nanotubes after targeted delivery to carcinoma cells using confocal Raman imaging as a label-free technique.
    Lamprecht C; Gierlinger N; Heister E; Unterauer B; Plochberger B; Brameshuber M; Hinterdorfer P; Hild S; Ebner A
    J Phys Condens Matter; 2012 Apr; 24(16):164206. PubMed ID: 22466107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperspectral Microscopy of Near-Infrared Fluorescence Enables 17-Chirality Carbon Nanotube Imaging.
    Roxbury D; Jena PV; Williams RM; Enyedi B; Niethammer P; Marcet S; Verhaegen M; Blais-Ouellette S; Heller DA
    Sci Rep; 2015 Sep; 5():14167. PubMed ID: 26387482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide detection and structure determination in live cells using confocal Raman microscopy.
    Terentis AC; Ye J
    Methods Mol Biol; 2013; 1081():211-36. PubMed ID: 24014442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular imaging of live cells by Raman microscopy.
    Palonpon AF; Sodeoka M; Fujita K
    Curr Opin Chem Biol; 2013 Aug; 17(4):708-15. PubMed ID: 23773582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration.
    Yaron PN; Holt BD; Short PA; Lösche M; Islam MF; Dahl KN
    J Nanobiotechnology; 2011 Sep; 9():45. PubMed ID: 21961562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging with Raman spectroscopy.
    Zhang Y; Hong H; Cai W
    Curr Pharm Biotechnol; 2010 Sep; 11(6):654-61. PubMed ID: 20497112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal, nanoscale, hyperspectral imaging demonstrated on heterostructures of quantum dots and DNA-wrapped single-wall carbon nanotubes.
    Kang H; Clarke ML; Tang J; Woodward JT; Chou SG; Zhou Z; Simpson JR; Walker AR; Nguyen T; Hwang J
    ACS Nano; 2009 Nov; 3(11):3769-75. PubMed ID: 19845333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Raman signals with an interferometrically controlled AFM tip.
    Oron-Carl M; Krupke R
    Nanotechnology; 2013 Oct; 24(41):415701. PubMed ID: 24045214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subsurface Raman imaging with nanoscale resolution.
    Anderson N; Anger P; Hartschuh A; Novotny L
    Nano Lett; 2006 Apr; 6(4):744-9. PubMed ID: 16608276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed Raman imaging of cellular processes.
    Ando J; Palonpon AF; Sodeoka M; Fujita K
    Curr Opin Chem Biol; 2016 Aug; 33():16-24. PubMed ID: 27107216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual Raman features of double coaxial carbon nanotubes with N-doped and B-doped multiwalls.
    Yang QH; Hou PX; Unno M; Yamauchi S; Saito R; Kyotani T
    Nano Lett; 2005 Dec; 5(12):2465-9. PubMed ID: 16351196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.