BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23151216)

  • 1. Cosynthesis of cargo-loaded hydroxyapatite/alginate core-shell nanoparticles (HAP@Alg) as pH-responsive nanovehicles by a pre-gel method.
    Liang YH; Liu CH; Liao SH; Lin YY; Tang HW; Liu SY; Lai IR; Wu KC
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6720-7. PubMed ID: 23151216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres.
    Liao YT; Liu CH; Yu J; Wu KC
    Int J Nanomedicine; 2014; 9():2767-78. PubMed ID: 24940057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH-responsive release properties for intracellular drug delivery.
    Yang YH; Liu CH; Liang YH; Lin FH; Wu KC
    J Mater Chem B; 2013 May; 1(19):2447-2450. PubMed ID: 32261043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyapatite/mesoporous silica coated gold nanorods with improved degradability as a multi-responsive drug delivery platform.
    Song Z; Liu Y; Shi J; Ma T; Zhang Z; Ma H; Cao S
    Mater Sci Eng C Mater Biol Appl; 2018 Feb; 83():90-98. PubMed ID: 29208292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of mesoporous silica nanoparticle-encapsulated alginate microparticles for sustained release and targeting therapy.
    Liao YT; Wu KC; Yu J
    J Biomed Mater Res B Appl Biomater; 2014 Feb; 102(2):293-302. PubMed ID: 23997043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of inorganic hydroxyapatite nanoparticles and organic biomolecules-dual encapsulated alginate microspheres.
    Wang YP; Liao YT; Liu CH; Yu J; Chen JC; Wu KC
    Biointerphases; 2015 Jun; 10(2):021005. PubMed ID: 25939572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trifunctional Fe
    Wang YP; Liao YT; Liu CH; Yu J; Alamri HR; Alothman ZA; Hossain MSA; Yamauchi Y; Wu KC
    ACS Biomater Sci Eng; 2017 Oct; 3(10):2366-2374. PubMed ID: 33445294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of paclitaxel-loaded poly(lactic acid)/hydroxyapatite core-shell nanoparticles as a stimuli-responsive drug delivery system.
    Lee S; Miyajima T; Sugawara-Narutaki A; Kato K; Nagata F
    R Soc Open Sci; 2021 Mar; 8(3):202030. PubMed ID: 33959355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell designed scaffolds of alginate/alpha-tricalcium phosphate for the loading and delivery of biological proteins.
    Perez RA; Kim HW
    J Biomed Mater Res A; 2013 Apr; 101(4):1103-12. PubMed ID: 23015482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic mesoporous silica nanoparticles end-capped with hydroxyapatite for pH-responsive drug release.
    Zhao CX; Yu L; Middelberg APJ
    J Mater Chem B; 2013 Oct; 1(37):4828-4833. PubMed ID: 32261164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the protein-loading capacity of hydroxyapatite by mercaptosuccinic acid modification.
    Ishihara S; Matsumoto T; Onoki T; Uddin MH; Sohmura T; Nakahira A
    Acta Biomater; 2010 Mar; 6(3):830-5. PubMed ID: 19836474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pH on the synthesis and properties of luminescent SiO2/calcium phosphate:Eu3+ core-shell nanoparticles.
    Dembski S; Milde M; Dyrba M; Schweizer S; Gellermann C; Klockenbring T
    Langmuir; 2011 Dec; 27(23):14025-32. PubMed ID: 21988231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of superparamagnetic bare Fe₃O₄ nanostructures and core/shell (Fe₃O₄/alginate) nanocomposites.
    Srivastava M; Singh J; Yashpal M; Gupta DK; Mishra RK; Tripathi S; Ojha AK
    Carbohydr Polym; 2012 Jul; 89(3):821-9. PubMed ID: 24750867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The grafting and release behavior of doxorubincin from Fe(3)O(4)@SiO(2) core-shell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug delivery.
    Chen FH; Gao Q; Ni JZ
    Nanotechnology; 2008 Apr; 19(16):165103. PubMed ID: 21825634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and in vitro evaluation of alginate gel-encapsulated, chitosan-coated ceramic nanocores for oral delivery of enzyme.
    Rawat M; Singh D; Saraf S; Saraf S
    Drug Dev Ind Pharm; 2008 Feb; 34(2):181-8. PubMed ID: 18302037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of coated whey protein/alginate beads as sustained release dosage form in simulated gastrointestinal environment.
    Hébrard G; Hoffart V; Cardot JM; Subirade M; Alric M; Beyssac E
    Drug Dev Ind Pharm; 2009 Sep; 35(9):1103-12. PubMed ID: 19365776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New core-shell hydroxyapatite/Gum-Acacia nanocomposites for drug delivery and tissue engineering applications.
    Padmanabhan VP; Kulandaivelu R; Nellaiappan SNTS
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():685-693. PubMed ID: 30184795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption.
    Kandori K; Kuroda T; Togashi S; Katayama E
    J Phys Chem B; 2011 Feb; 115(4):653-9. PubMed ID: 21162543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyapatite nanoparticles as stimulus-responsive particulate emulsifiers and building block for porous materials.
    Fujii S; Okada M; Furuzono T
    J Colloid Interface Sci; 2007 Nov; 315(1):287-96. PubMed ID: 17681523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of positively charged calcium hydroxyapatite nano-crystals and their adsorption behavior of proteins.
    Kandori K; Oda S; Fukusumi M; Morisada Y
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):140-5. PubMed ID: 19515538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.