BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23151271)

  • 1. Interphase chromosome positioning in in vitro porcine cells and ex vivo porcine tissues.
    Foster HA; Griffin DK; Bridger JM
    BMC Cell Biol; 2012 Nov; 13():30. PubMed ID: 23151271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interphase chromosome positioning affects the spectrum of radiation-induced chromosomal aberrations.
    Boei JJ; Fomina J; Darroudi F; Nagelkerke NJ; Mullenders LH
    Radiat Res; 2006 Aug; 166(2):319-26. PubMed ID: 16881732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positioning of human chromosomes in murine cell hybrids according to synteny.
    Meaburn KJ; Newbold RF; Bridger JM
    Chromosoma; 2008 Dec; 117(6):579-91. PubMed ID: 18651158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of Spatial Organization of Chromosome Territories in Chromosome Exchange Aberrations After Ionizing Radiation Exposure.
    Balajee AS; Sanders JT; Golloshi R; Shuryak I; McCord RP; Dainiak N
    Health Phys; 2018 Jul; 115(1):77-89. PubMed ID: 29787433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosomes exhibit preferential positioning in nuclei of quiescent human cells.
    Nagele RG; Freeman T; McMorrow L; Thomson Z; Kitson-Wind K; Lee Hy
    J Cell Sci; 1999 Feb; 112 ( Pt 4)():525-35. PubMed ID: 9914164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system.
    Szczerbal I; Foster HA; Bridger JM
    Chromosoma; 2009 Oct; 118(5):647-63. PubMed ID: 19585140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined fluorescent-chromogenic in situ hybridization for identification and laser microdissection of interphase chromosomes.
    Paz N; Zabala A; Royo F; García-Orad Á; Zugaza JL; Parada LA
    PLoS One; 2013; 8(4):e60238. PubMed ID: 23565206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative proximity of chromosome territories influences chromosome exchange partners in radiation-induced chromosome rearrangements in primary human bronchial epithelial cells.
    Foster HA; Estrada-Girona G; Themis M; Garimberti E; Hill MA; Bridger JM; Anderson RM
    Mutat Res; 2013 Aug; 756(1-2):66-77. PubMed ID: 23791770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CBFB and MYH11 in inv(16)(p13q22) of acute myeloid leukemia displaying close spatial proximity in interphase nuclei of human hematopoietic stem cells.
    Weckerle AB; Santra M; Ng MC; Koty PP; Wang YH
    Genes Chromosomes Cancer; 2011 Sep; 50(9):746-55. PubMed ID: 21638519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlated positioning of homologous chromosomes in daughter fibroblast cells.
    Sun HB; Yokota H
    Chromosome Res; 1999; 7(8):603-10. PubMed ID: 10628661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional positioning of B chromosomes in fibroblast nuclei of the red fox and the chinese raccoon dog.
    Kociucka B; Sosnowski J; Kubiak A; Nowak A; Pawlak P; Szczerbal I
    Cytogenet Genome Res; 2013; 139(4):243-9. PubMed ID: 23485799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rearrangement of human cell homologous chromosome domains in response to ionizing radiation.
    Dolling JA; Boreham DR; Brown DL; Raaphorst GP; Mitchel RE
    Int J Radiat Biol; 1997 Sep; 72(3):303-11. PubMed ID: 9298110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates.
    Neusser M; Schubel V; Koch A; Cremer T; Müller S
    Chromosoma; 2007 Jun; 116(3):307-20. PubMed ID: 17318634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-random organization of the Biomphalaria glabrata genome in interphase Bge cells and the spatial repositioning of activated genes in cells co-cultured with Schistosoma mansoni.
    Knight M; Ittiprasert W; Odoemelam EC; Adema CM; Miller A; Raghavan N; Bridger JM
    Int J Parasitol; 2011 Jan; 41(1):61-70. PubMed ID: 20849859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomes as well as chromosomal subdomains constitute distinct units in interphase nuclei.
    Visser AE; Aten JA
    J Cell Sci; 1999 Oct; 112 ( Pt 19)():3353-60. PubMed ID: 10504340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional arrangement of genes involved in lipid metabolism in nuclei of porcine adipocytes and fibroblasts in relation to their transcription level.
    Kociucka B; Cieslak J; Szczerbal I
    Cytogenet Genome Res; 2012; 136(4):295-302. PubMed ID: 22572622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association of adipogenic genes with SC-35 domains during porcine adipogenesis.
    Szczerbal I; Bridger JM
    Chromosome Res; 2010 Dec; 18(8):887-95. PubMed ID: 21127962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of chromosome positioning during adipocyte differentiation.
    Kuroda M; Tanabe H; Yoshida K; Oikawa K; Saito A; Kiyuna T; Mizusawa H; Mukai K
    J Cell Sci; 2004 Nov; 117(Pt 24):5897-903. PubMed ID: 15537832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Position of human chromosomes is conserved in mouse nuclei indicating a species-independent mechanism for maintaining genome organization.
    Sengupta K; Camps J; Mathews P; Barenboim-Stapleton L; Nguyen QT; Difilippantonio MJ; Ried T
    Chromosoma; 2008 Oct; 117(5):499-509. PubMed ID: 18563425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An uncertainty principle in chromosome positioning.
    Parada LA; Roix JJ; Misteli T
    Trends Cell Biol; 2003 Aug; 13(8):393-6. PubMed ID: 12888289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.