BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 23152603)

  • 1. Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators.
    Sellix MT; Evans JA; Leise TL; Castanon-Cervantes O; Hill DD; DeLisser P; Block GD; Menaker M; Davidson AJ
    J Neurosci; 2012 Nov; 32(46):16193-202. PubMed ID: 23152603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro.
    Molyneux PC; Dahlgren MK; Harrington ME
    Brain Res; 2008 Sep; 1228():127-34. PubMed ID: 18598681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.
    Bode B; Taneja R; Rossner MJ; Oster H
    Chronobiol Int; 2011 Nov; 28(9):737-50. PubMed ID: 22080784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling governs entrainment range of circadian clocks.
    Abraham U; Granada AE; Westermark PO; Heine M; Kramer A; Herzel H
    Mol Syst Biol; 2010 Nov; 6():438. PubMed ID: 21119632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian rhythms of gastrointestinal function are regulated by both central and peripheral oscillators.
    Malloy JN; Paulose JK; Li Y; Cassone VM
    Am J Physiol Gastrointest Liver Physiol; 2012 Aug; 303(4):G461-73. PubMed ID: 22723262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Circadian Period of PER2 Expression in the Suprachiasmatic Nucleus.
    Granados-Fuentes D; Hermanstyne TO; Carrasquillo Y; Nerbonne JM; Herzog ED
    J Biol Rhythms; 2015 Oct; 30(5):396-407. PubMed ID: 26152125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system.
    Davidson AJ; Castanon-Cervantes O; Leise TL; Molyneux PC; Harrington ME
    Eur J Neurosci; 2009 Jan; 29(1):171-80. PubMed ID: 19032592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian organization is governed by extra-SCN pacemakers.
    Pezuk P; Mohawk JA; Yoshikawa T; Sellix MT; Menaker M
    J Biol Rhythms; 2010 Dec; 25(6):432-41. PubMed ID: 21135159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoperiod differentially regulates circadian oscillators in central and peripheral tissues of the Syrian hamster.
    Carr AJ; Johnston JD; Semikhodskii AG; Nolan T; Cagampang FR; Stirland JA; Loudon AS
    Curr Biol; 2003 Sep; 13(17):1543-8. PubMed ID: 12956958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mammalian circadian timing system: organization and coordination of central and peripheral clocks.
    Dibner C; Schibler U; Albrecht U
    Annu Rev Physiol; 2010; 72():517-49. PubMed ID: 20148687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entrainment of the master circadian clock by scheduled feeding.
    Castillo MR; Hochstetler KJ; Tavernier RJ; Greene DM; Bult-Ito A
    Am J Physiol Regul Integr Comp Physiol; 2004 Sep; 287(3):R551-5. PubMed ID: 15155280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immortalized cell lines for real-time analysis of circadian pacemaker and peripheral oscillator properties.
    Farnell YF; Shende VR; Neuendorff N; Allen GC; Earnest DJ
    Eur J Neurosci; 2011 Apr; 33(8):1533-40. PubMed ID: 21366728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis.
    Amir S; Lamont EW; Robinson B; Stewart J
    J Neurosci; 2004 Jan; 24(4):781-90. PubMed ID: 14749422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of network architecture on synchronization and entrainment properties of the circadian oscillations in the suprachiasmatic nucleus.
    Hafner M; Koeppl H; Gonze D
    PLoS Comput Biol; 2012; 8(3):e1002419. PubMed ID: 22423219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging does not compromise in vitro oscillation of the suprachiasmatic nuclei but makes it more vulnerable to constant light.
    Polidarová L; Sládek M; Novosadová Z; Sumová A
    Chronobiol Int; 2017; 34(1):105-117. PubMed ID: 27791401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resetting central and peripheral circadian oscillators in transgenic rats.
    Yamazaki S; Numano R; Abe M; Hida A; Takahashi R; Ueda M; Block GD; Sakaki Y; Menaker M; Tei H
    Science; 2000 Apr; 288(5466):682-5. PubMed ID: 10784453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neuropeptide speeds circadian entrainment by reducing intercellular synchrony.
    An S; Harang R; Meeker K; Granados-Fuentes D; Tsai CA; Mazuski C; Kim J; Doyle FJ; Petzold LR; Herzog ED
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):E4355-61. PubMed ID: 24167276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feeding Time Entrains the Olfactory Bulb Circadian Clock in Anosmic PER2::LUC Mice.
    Pavlovski I; Evans JA; Mistlberger RE
    Neuroscience; 2018 Nov; 393():175-184. PubMed ID: 30321586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heme reversibly damps PERIOD2 rhythms in mouse suprachiasmatic nucleus explants.
    Guenthner CJ; Bickar D; Harrington ME
    Neuroscience; 2009 Dec; 164(2):832-41. PubMed ID: 19698763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.