BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 23152622)

  • 1. Reward stability determines the contribution of orbitofrontal cortex to adaptive behavior.
    Riceberg JS; Shapiro ML
    J Neurosci; 2012 Nov; 32(46):16402-9. PubMed ID: 23152622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orbitofrontal Cortex Signals Expected Outcomes with Predictive Codes When Stable Contingencies Promote the Integration of Reward History.
    Riceberg JS; Shapiro ML
    J Neurosci; 2017 Feb; 37(8):2010-2021. PubMed ID: 28115481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifaceted Contributions by Different Regions of the Orbitofrontal and Medial Prefrontal Cortex to Probabilistic Reversal Learning.
    Dalton GL; Wang NY; Phillips AG; Floresco SB
    J Neurosci; 2016 Feb; 36(6):1996-2006. PubMed ID: 26865622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orbitofrontal cortex reflects changes in response-outcome contingencies during probabilistic reversal learning.
    Amodeo LR; McMurray MS; Roitman JD
    Neuroscience; 2017 Mar; 345():27-37. PubMed ID: 26996511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex.
    Chudasama Y; Robbins TW
    J Neurosci; 2003 Sep; 23(25):8771-80. PubMed ID: 14507977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex.
    Clarke HF; Robbins TW; Roberts AC
    J Neurosci; 2008 Oct; 28(43):10972-82. PubMed ID: 18945905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basolateral amygdala lesions facilitate reward choices after negative feedback in rats.
    Izquierdo A; Darling C; Manos N; Pozos H; Kim C; Ostrander S; Cazares V; Stepp H; Rudebeck PH
    J Neurosci; 2013 Feb; 33(9):4105-9. PubMed ID: 23447618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning.
    Ghods-Sharifi S; Haluk DM; Floresco SB
    Neurobiol Learn Mem; 2008 May; 89(4):567-73. PubMed ID: 18054257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic coding of goal-directed paths by orbital prefrontal cortex.
    Young JJ; Shapiro ML
    J Neurosci; 2011 Apr; 31(16):5989-6000. PubMed ID: 21508224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Value-guided remapping of sensory cortex by lateral orbitofrontal cortex.
    Banerjee A; Parente G; Teutsch J; Lewis C; Voigt FF; Helmchen F
    Nature; 2020 Sep; 585(7824):245-250. PubMed ID: 32884146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of orbitofrontal cortex lesions on autoshaped lever pressing and reversal learning.
    Chang SE
    Behav Brain Res; 2014 Oct; 273():52-6. PubMed ID: 25078291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Markers of serotonergic function in the orbitofrontal cortex and dorsal raphé nucleus predict individual variation in spatial-discrimination serial reversal learning.
    Barlow RL; Alsiö J; Jupp B; Rabinovich R; Shrestha S; Roberts AC; Robbins TW; Dalley JW
    Neuropsychopharmacology; 2015 Jun; 40(7):1619-30. PubMed ID: 25567428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Touch-screen visual reversal learning is mediated by value encoding and signal propagation in the orbitofrontal cortex.
    Marquardt K; Sigdel R; Brigman JL
    Neurobiol Learn Mem; 2017 Mar; 139():179-188. PubMed ID: 28111339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The orbitofrontal cortex as part of a hierarchical neural system mediating choice between two good options.
    Keiflin R; Reese RM; Woods CA; Janak PH
    J Neurosci; 2013 Oct; 33(40):15989-98. PubMed ID: 24089503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotonergic Innervations of the Orbitofrontal and Medial-prefrontal Cortices are Differentially Involved in Visual Discrimination and Reversal Learning in Rats.
    Alsiö J; Lehmann O; McKenzie C; Theobald DE; Searle L; Xia J; Dalley JW; Robbins TW
    Cereb Cortex; 2021 Jan; 31(2):1090-1105. PubMed ID: 33043981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep brain stimulation in the lateral orbitofrontal cortex impairs spatial reversal learning.
    Klanker M; Post G; Joosten R; Feenstra M; Denys D
    Behav Brain Res; 2013 May; 245():7-12. PubMed ID: 23396148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective involvement by the medial orbitofrontal cortex in biasing risky, but not impulsive, choice.
    Stopper CM; Green EB; Floresco SB
    Cereb Cortex; 2014 Jan; 24(1):154-62. PubMed ID: 23042736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prefrontal Regulation of Neuronal Activity in the Ventral Tegmental Area.
    Jo YS; Mizumori SJY
    Cereb Cortex; 2016 Oct; 26(10):4057-4068. PubMed ID: 26400913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the orbitofrontal cortex and medial striatum in the regulation of prepotent responses to food rewards.
    Man MS; Clarke HF; Roberts AC
    Cereb Cortex; 2009 Apr; 19(4):899-906. PubMed ID: 18689858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential contributions of the primate ventrolateral prefrontal and orbitofrontal cortex to serial reversal learning.
    Rygula R; Walker SC; Clarke HF; Robbins TW; Roberts AC
    J Neurosci; 2010 Oct; 30(43):14552-9. PubMed ID: 20980613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.