These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 23152774)
1. Newtonian versus special-relativistic statistical predictions for low-speed scattering. Liang SN; Borondo F; Lan BL PLoS One; 2012; 7(11):e48447. PubMed ID: 23152774 [TBL] [Abstract][Full Text] [Related]
2. Statistical predictions for the dynamics of a low-speed system: Newtonian versus special-relativistic mechanics. Liang SN; Lan BL PLoS One; 2012; 7(5):e36430. PubMed ID: 22606259 [TBL] [Abstract][Full Text] [Related]
3. Newtonian and special-relativistic predictions for the trajectories of a low-speed scattering system. Lan BL; Borondo F Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036201. PubMed ID: 21517569 [TBL] [Abstract][Full Text] [Related]
4. Comparison of newtonian and special-relativistic trajectories with the general-relativistic trajectory for a low-speed weak-gravity system. Liang SN; Lan BL PLoS One; 2012; 7(4):e34720. PubMed ID: 22536328 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the Newtonian and relativistic predicted trajectories for a low-speed periodically delta-kicked system. Lan BL Chaos; 2006 Sep; 16(3):033107. PubMed ID: 17014212 [TBL] [Abstract][Full Text] [Related]
9. Method to modify random matrix theory using short-time behavior in chaotic systems. Smith AM; Kaplan L Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):035205. PubMed ID: 19905169 [TBL] [Abstract][Full Text] [Related]
10. New developments in classical chaotic scattering. Seoane JM; Sanjuán MA Rep Prog Phys; 2013 Jan; 76(1):016001. PubMed ID: 23242261 [TBL] [Abstract][Full Text] [Related]
11. Chaos in an exact relativistic three-body self-gravitating system. Burnell F; Malecki JJ; Mann RB; Ohta T Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016214. PubMed ID: 14995700 [TBL] [Abstract][Full Text] [Related]
12. The path integral formulation of climate dynamics. Navarra A; Tribbia J; Conti G PLoS One; 2013; 8(6):e67022. PubMed ID: 23840577 [TBL] [Abstract][Full Text] [Related]
14. Kelvin-wave cascade and dissipation in low-temperature superfluid vortices. Krstulovic G Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):055301. PubMed ID: 23214835 [TBL] [Abstract][Full Text] [Related]
15. Extrema statistics in the dynamics of a non-Gaussian random field. Beuman TH; Turner AM; Vitelli V Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022142. PubMed ID: 23496494 [TBL] [Abstract][Full Text] [Related]
16. Relativistic quantum level-spacing statistics in chaotic graphene billiards. Huang L; Lai YC; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):055203. PubMed ID: 20866288 [TBL] [Abstract][Full Text] [Related]
17. Statistics of resonance states in open chaotic systems: a perturbative approach. Poli C; Savin DV; Legrand O; Mortessagne F Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046203. PubMed ID: 19905411 [TBL] [Abstract][Full Text] [Related]
18. When is high-dimensional scattering chaos essentially two dimensional? Measuring the product structure of singularities. Drótos G; Jung C; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056210. PubMed ID: 23214860 [TBL] [Abstract][Full Text] [Related]
19. From local uncertainty to global predictions: Making predictions on fractal basins. Levi A; Sabuco J; Small M; Sanjuán MAF PLoS One; 2018; 13(4):e0194926. PubMed ID: 29668687 [TBL] [Abstract][Full Text] [Related]
20. Influence of the gravitational radius on asymptotic behavior of the relativistic Sitnikov problem. Bernal JD; Seoane JM; Vallejo JC; Huang L; Sanjuán MAF Phys Rev E; 2020 Oct; 102(4-1):042204. PubMed ID: 33212716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]