BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 23153179)

  • 1. Computational modeling of human coreceptor CCR5 antagonist as a HIV-1 entry inhibitor: using an integrated homology modeling, docking, and membrane molecular dynamics simulation analysis approach.
    Gadhe CG; Kothandan G; Cho SJ
    J Biomol Struct Dyn; 2013; 31(11):1251-76. PubMed ID: 23153179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular interactions of CCR5 with major classes of small-molecule anti-HIV CCR5 antagonists.
    Kondru R; Zhang J; Ji C; Mirzadegan T; Rotstein D; Sankuratri S; Dioszegi M
    Mol Pharmacol; 2008 Mar; 73(3):789-800. PubMed ID: 18096812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of potential CCR5 inhibitors through pharmacophore-based virtual screening, molecular dynamics simulation and binding free energy analysis.
    Wang J; Shu M; Wang Y; Hu Y; Wang Y; Luo Y; Lin Z
    Mol Biosyst; 2016 Oct; 12(11):3396-3406. PubMed ID: 27714030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding site exploration of CCR5 using in silico methodologies: a 3D-QSAR approach.
    Gadhe CG; Kothandan G; Cho SJ
    Arch Pharm Res; 2013 Jan; 36(1):6-31. PubMed ID: 23325486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Putative cholesterol-binding sites in human immunodeficiency virus (HIV) coreceptors CXCR4 and CCR5.
    Zhukovsky MA; Lee PH; Ott A; Helms V
    Proteins; 2013 Apr; 81(4):555-67. PubMed ID: 23161741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring a model of a chemokine receptor/ligand complex in an explicit membrane environment by molecular dynamics simulation: the human CCR1 receptor.
    Shahlaei M; Madadkar-Sobhani A; Fassihi A; Saghaie L
    J Chem Inf Model; 2011 Oct; 51(10):2717-30. PubMed ID: 21910472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homology modeling of human CCR5 and analysis of its binding properties through molecular docking and molecular dynamics simulation.
    Shahlaei M; Madadkar-Sobhani A; Mahnam K; Fassihi A; Saghaie L; Mansourian M
    Biochim Biophys Acta; 2011 Mar; 1808(3):802-17. PubMed ID: 21167131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated computational tools for identification of CCR5 antagonists as potential HIV-1 entry inhibitors: homology modeling, virtual screening, molecular dynamics simulations and 3D QSAR analysis.
    Moonsamy S; Dash RC; Soliman ME
    Molecules; 2014 Apr; 19(4):5243-65. PubMed ID: 24762964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure prediction of GPCRs using piecewise homologs and application to the human CCR5 chemokine receptor: validation through agonist and antagonist docking.
    Arumugam K; Crouzy S; Chevigne A; Seguin-Devaux C; Schmit JC
    J Biomol Struct Dyn; 2014; 32(8):1274-89. PubMed ID: 23869548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico characterization of binding mode of CCR8 inhibitor: homology modeling, docking and membrane based MD simulation study.
    Gadhe CG; Balupuri A; Cho SJ
    J Biomol Struct Dyn; 2015; 33(11):2491-510. PubMed ID: 25617117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study on the interaction between CCR5 and HIV-1 entry inhibitor maraviroc: insight from accelerated molecular dynamics simulation and free energy calculation.
    Bai Q; Zhang Y; Li X; Chen W; Liu H; Yao X
    Phys Chem Chem Phys; 2014 Nov; 16(44):24332-8. PubMed ID: 25296959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure prediction and molecular dynamics simulations of a G-protein coupled receptor: human CCR2 receptor.
    Singh R; Sobhia ME
    J Biomol Struct Dyn; 2013; 31(7):694-715. PubMed ID: 22909007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular anatomy of CCR5 engagement by physiologic and viral chemokines and HIV-1 envelope glycoproteins: differences in primary structural requirements for RANTES, MIP-1 alpha, and vMIP-II Binding.
    Navenot JM; Wang ZX; Trent JO; Murray JL; Hu QX; DeLeeuw L; Moore PS; Chang Y; Peiper SC
    J Mol Biol; 2001 Nov; 313(5):1181-93. PubMed ID: 11700073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building three-dimensional structures of HIV-1 coreceptor CCR5 and its interaction with antagonist TAK779 by comparative molecular modeling.
    Huang XQ; Jiang HL; Luo XM; Chen KX; Ji RY; Cao Y; Pei G
    Acta Pharmacol Sin; 2000 Jun; 21(6):521-8. PubMed ID: 11360686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular docking and 3D QSAR studies on 1-amino-2-phenyl-4-(piperidin-1-yl)-butanes based on the structural modeling of human CCR5 receptor.
    Xu Y; Liu H; Niu C; Luo C; Luo X; Shen J; Chen K; Jiang H
    Bioorg Med Chem; 2004 Dec; 12(23):6193-208. PubMed ID: 15519163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure modeling of the chemokine receptor CCR5: implications for ligand binding and selectivity.
    Paterlini MG
    Biophys J; 2002 Dec; 83(6):3012-31. PubMed ID: 12496074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and structural characterization of novel genetic elements in the HIV-1 V3 loop regulating coreceptor usage.
    Svicher V; Alteri C; Artese A; Zhang JM; Costa G; Mercurio F; D'Arrigo R; Alcaro S; Palù G; Clementi M; Zazzi M; Andreoni M; Antinori A; Lazzarin A; Ceccherini-Silberstein F; Perno CF;
    Antivir Ther; 2011; 16(7):1035-45. PubMed ID: 22024519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the binding modes of CC chemokine receptor 4 (CCR4) inhibitors: a combined approach involving homology modelling, docking, and molecular dynamics simulation studies.
    Gadhe CG; Kim MH
    Mol Biosyst; 2015 Feb; 11(2):618-34. PubMed ID: 25474265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of ligand-based and receptor-based virtual screening of HIV entry inhibitors for the CXCR4 and CCR5 receptors using 3D ligand shape matching and ligand-receptor docking.
    Pérez-Nueno VI; Ritchie DW; Rabal O; Pascual R; Borrell JI; Teixidó J
    J Chem Inf Model; 2008 Mar; 48(3):509-33. PubMed ID: 18298095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of 2-aryl-4-(piperidin-1-yl)butanamines and 1,3,4-trisubstituted pyrrolidines to human CCR5: a molecular modeling-guided mutagenesis study of the binding pocket.
    Castonguay LA; Weng Y; Adolfsen W; Di Salvo J; Kilburn R; Caldwell CG; Daugherty BL; Finke PE; Hale JJ; Lynch CL; Mills SG; MacCoss M; Springer MS; DeMartino JA
    Biochemistry; 2003 Feb; 42(6):1544-50. PubMed ID: 12578367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.