These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 23153372)
1. Formation of iron(III) (hydr)oxides on polyaspartate- and alginate-coated substrates: effects of coating hydrophilicity and functional group. Ray JR; Lee B; Baltrusaitis J; Jun YS Environ Sci Technol; 2012 Dec; 46(24):13167-75. PubMed ID: 23153372 [TBL] [Abstract][Full Text] [Related]
2. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz. Neil CW; Lee B; Jun YS Environ Sci Technol; 2014 Oct; 48(20):11883-91. PubMed ID: 25232994 [TBL] [Abstract][Full Text] [Related]
3. Control of heterogeneous Fe(III) (hydr)oxide nucleation and growth by interfacial energies and local saturations. Hu Y; Neil C; Lee B; Jun YS Environ Sci Technol; 2013 Aug; 47(16):9198-206. PubMed ID: 23875694 [TBL] [Abstract][Full Text] [Related]
4. Structural organization of iron oxide nanoparticles synthesized inside hybrid polymer gels derived from alginate studied with small-angle X-ray scattering. Hernández R; Sacristán J; Nogales A; Ezquerra TA; Mijangos C Langmuir; 2009 Nov; 25(22):13212-8. PubMed ID: 19769342 [TBL] [Abstract][Full Text] [Related]
5. Environmentally abundant anions influence the nucleation, growth, Ostwald ripening, and aggregation of hydrous Fe(III) oxides. Hu Y; Lee B; Bell C; Jun YS Langmuir; 2012 May; 28(20):7737-46. PubMed ID: 22568400 [TBL] [Abstract][Full Text] [Related]
6. Aluminum affects heterogeneous Fe(III) (Hydr)oxide nucleation, growth, and ostwald ripening. Hu Y; Li Q; Lee B; Jun YS Environ Sci Technol; 2014; 48(1):299-306. PubMed ID: 24289329 [TBL] [Abstract][Full Text] [Related]
7. Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations. Chen KL; Mylon SE; Elimelech M Langmuir; 2007 May; 23(11):5920-8. PubMed ID: 17469860 [TBL] [Abstract][Full Text] [Related]
8. Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces. Jun YS; Kim D; Neil CW Acc Chem Res; 2016 Sep; 49(9):1681-90. PubMed ID: 27513685 [TBL] [Abstract][Full Text] [Related]
9. Amorphous iron-(hydr) oxide networks at liquid/vapor interfaces: in situ X-ray scattering and spectroscopy studies. Wang W; Pleasants J; Bu W; Park RY; Kuzmenko I; Vaknin D J Colloid Interface Sci; 2012 Oct; 384(1):45-54. PubMed ID: 22818795 [TBL] [Abstract][Full Text] [Related]
10. Interfacial and Activation Energies of Environmentally Abundant Heterogeneously Nucleated Iron(III) (Hydr)oxide on Quartz. Wu X; Lee B; Jun YS Environ Sci Technol; 2020 Oct; 54(19):12119-12129. PubMed ID: 32786556 [TBL] [Abstract][Full Text] [Related]
11. pH responsive controlled release of anti-cancer hydrophobic drugs from sodium alginate and hydroxyapatite bi-coated iron oxide nanoparticles. Manatunga DC; de Silva RM; de Silva KMN; de Silva N; Bhandari S; Yap YK; Costha NP Eur J Pharm Biopharm; 2017 Aug; 117():29-38. PubMed ID: 28330763 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Ma HL; Qi XR; Maitani Y; Nagai T Int J Pharm; 2007 Mar; 333(1-2):177-86. PubMed ID: 17074454 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of aligned hematite nanoparticles on chitosan-alginate films. Sreeram KJ; Nidhin M; Nair BU Colloids Surf B Biointerfaces; 2009 Jul; 71(2):260-7. PubMed ID: 19303261 [TBL] [Abstract][Full Text] [Related]
14. Design of iron oxide/silica/alginate hybrid magnetic carriers (HYMAC). Boissière M; Allouche J; Brayner R; Chanéac C; Livage J; Coradin T J Nanosci Nanotechnol; 2007 Dec; 7(12):4649-54. PubMed ID: 18283857 [TBL] [Abstract][Full Text] [Related]
15. Ionic Strength-Controlled Mn (Hydr)oxide Nanoparticle Nucleation on Quartz: Effect of Aqueous Mn(OH)2. Jung H; Jun YS Environ Sci Technol; 2016 Jan; 50(1):105-13. PubMed ID: 26588858 [TBL] [Abstract][Full Text] [Related]
16. Composite alginate hydrogels: An innovative approach for the controlled release of hydrophobic drugs. Josef E; Zilberman M; Bianco-Peled H Acta Biomater; 2010 Dec; 6(12):4642-9. PubMed ID: 20601237 [TBL] [Abstract][Full Text] [Related]
17. Fe(III) hydroxide nucleation and growth on quartz in the presence of Cu(II), Pb(II), and Cr(III): metal hydrolysis and adsorption. Dai C; Hu Y Environ Sci Technol; 2015 Jan; 49(1):292-300. PubMed ID: 25496643 [TBL] [Abstract][Full Text] [Related]
18. Structural regime identification in ionotropic alginate gels: influence of the cation nature and alginate structure. Agulhon P; Robitzer M; David L; Quignard F Biomacromolecules; 2012 Jan; 13(1):215-20. PubMed ID: 22172250 [TBL] [Abstract][Full Text] [Related]
19. In situ observations of nanoparticle early development kinetics at mineral-water interfaces. Jun YS; Lee B; Waychunas GA Environ Sci Technol; 2010 Nov; 44(21):8182-9. PubMed ID: 20932004 [TBL] [Abstract][Full Text] [Related]
20. Structural and rheological characterizations of nanoparticles of environment-sensitive hydrophobic alginate in aqueous solution. Chen K; Li J; Feng Y; He F; Zhou Q; Xiao D; Tang Y Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):617-627. PubMed ID: 27770934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]