These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 23153373)

  • 1. Microfluidic fabrication and thermoreversible response of core/shell photonic crystalline microspheres based on deformable nanogels.
    Hu Y; Wang J; Wang H; Wang Q; Zhu J; Yang Y
    Langmuir; 2012 Dec; 28(49):17186-92. PubMed ID: 23153373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Janus photonic crystal microspheres: centrifugation-assisted generation and reversible optical property.
    Hu Y; Wang J; Li C; Wang Q; Wang H; Zhu J; Yang Y
    Langmuir; 2013 Dec; 29(50):15529-34. PubMed ID: 24266787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uniform core-shell photonic crystal microbeads as microcarriers for optical encoding.
    Jia X; Hu Y; Wang K; Liang R; Li J; Wang J; Zhu J
    Langmuir; 2014 Oct; 30(40):11883-9. PubMed ID: 25233156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optofluidic encapsulation of crystalline colloidal arrays into spherical membrane.
    Kim SH; Jeon SJ; Yang SM
    J Am Chem Soc; 2008 May; 130(18):6040-6. PubMed ID: 18393502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic assembly route to colloidal responsive photonic nanostructures.
    He L; Wang M; Ge J; Yin Y
    Acc Chem Res; 2012 Sep; 45(9):1431-40. PubMed ID: 22578015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmosis manipulable morphology and photonic property of microcapsules with colloidal nano-in-micro structure.
    Hu Y; Li C; Wang J; Jia X; Zhu J; Wang Q; Wang H; Yang Y
    J Colloid Interface Sci; 2020 Aug; 574():337-346. PubMed ID: 32335483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of multifunctional photonic crystal microcapsules with tunable shell structures by combining microfluidic and controlled photopolymerization.
    Wang J; Hu Y; Deng R; Xu W; Liu S; Liang R; Nie Z; Zhu J
    Lab Chip; 2012 Aug; 12(16):2795-8. PubMed ID: 22766693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spherical colloidal photonic crystals.
    Zhao Y; Shang L; Cheng Y; Gu Z
    Acc Chem Res; 2014 Dec; 47(12):3632-42. PubMed ID: 25393430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superparamagnetic and fluorescent thermo-responsive core-shell-corona hybrid nanogels with a protective silica shell.
    Ruhland TM; Reichstein PM; Majewski AP; Walther A; Müller AH
    J Colloid Interface Sci; 2012 May; 374(1):45-53. PubMed ID: 22364711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral Photonic Crystalline Microcapsules with Strict Monodispersity, Ultrahigh Thermal Stability, and Reversible Response.
    Lin P; Yan Q; Wei Z; Chen Y; Chen S; Wang H; Huang Z; Wang X; Cheng Z
    ACS Appl Mater Interfaces; 2018 May; 10(21):18289-18299. PubMed ID: 29737159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Study of Tunable Photonic Nanojets Generated by Biocompatible Hydrogel Core-Shell Microspheres for Surface-Enhanced Raman Scattering Applications.
    Wang YJ; Dai CA; Li JH
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetochromatic microspheres: rotating photonic crystals.
    Ge J; Lee H; He L; Kim J; Lu Z; Kim H; Goebl J; Kwon S; Yin Y
    J Am Chem Soc; 2009 Nov; 131(43):15687-94. PubMed ID: 19527049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniform double-walled polymer microspheres of controllable shell thickness.
    Berkland C; Pollauf E; Pack DW; Kim K
    J Control Release; 2004 Apr; 96(1):101-11. PubMed ID: 15063033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidics-Assisted Fabrication of Dual Stopband Photonic Microcapsules and Their Applications for Anticounterfeiting.
    Zhou C; Zhang S; Hui T; Cui Q; Hu Y
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid.
    Kim C; Chung S; Kim YE; Lee KS; Lee SH; Oh KW; Kang JY
    Lab Chip; 2011 Jan; 11(2):246-52. PubMed ID: 20967338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous, core-shell, and hollow-shell ZnS colloid-based photonic crystals.
    Hosein ID; Liddell CM
    Langmuir; 2007 Feb; 23(5):2892-7. PubMed ID: 17274634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoresponsive colloidal crystals built from core-shell poly(styrene/alpha-tert-butoxy-omega-vinylbenzylpolyglycidol) microspheres.
    Griffete N; Dybkowska M; Glebocki B; Basinska T; Connan C; Maître A; Chehimi MM; Slomkowski S; Mangeney C
    Langmuir; 2010 Jul; 26(13):11550-7. PubMed ID: 20481465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen plasma etching-induced crystalline lattice transformation of colloidal photonic crystals.
    Ding T; Wang F; Song K; Yang G; Tung CH
    J Am Chem Soc; 2010 Dec; 132(49):17340-2. PubMed ID: 21090677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-functional core-shell hybrid nanogels for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery.
    Wu W; Shen J; Gai Z; Hong K; Banerjee P; Zhou S
    Biomaterials; 2011 Dec; 32(36):9876-87. PubMed ID: 21944827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyethyleneimine-based core-shell nanogels: a promising siRNA carrier for argininosuccinate synthetase mRNA knockdown in HeLa cells.
    Mimi H; Ho KM; Siu YS; Wu A; Li P
    J Control Release; 2012 Feb; 158(1):123-30. PubMed ID: 22094103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.