These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 2315350)

  • 1. Amino acids and memory consolidation in the cricket. I: Changes in the titer of free amino acids in nervous tissue after learning.
    Jaffe K; Baklien A; Zabala NA; Ferrer AC; Granier M; Tablante A; Ribbi-Jaffe A; Blau S
    Pharmacol Biochem Behav; 1990 Jan; 35(1):127-31. PubMed ID: 2315350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acids and memory consolidation in the cricket. II: Effect of injected amino acids and opioids on memory.
    Jaffe K; Zabala NA; De Bellard ME; Granier M; Aragort W; Tablante A
    Pharmacol Biochem Behav; 1990 Jan; 35(1):133-6. PubMed ID: 2107553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid levels during learning and memory consolidation of an aversive conditioning task in crickets.
    Jaffe K; Blau S; Zabala N
    Pharmacol Biochem Behav; 1992 Sep; 43(1):205-14. PubMed ID: 1409806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of amino acids, opioids, nitric oxide, and NMDA receptors in learning and memory consolidation in crickets.
    Jaffe K; Blanco ME
    Pharmacol Biochem Behav; 1994 Mar; 47(3):493-6. PubMed ID: 7911576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Instrumental learning under positive rewards and types of memory in the cricket Pteronemobius sp (Orthoptera, Insecta)].
    Zabala NA; Jaffé K; Rosas A; Zaldivar ME
    Acta Cient Venez; 1987; 38(2):266-73. PubMed ID: 3453572
    [No Abstract]   [Full Text] [Related]  

  • 6. Immunohistochemical characterization of a widely spread Arg8-vasopressin-like neuroendocrine system in the cricket Teleogryllus commodus Walker (Orthoptera, Insecta).
    Musiol IM; Jirikowski GF; Pohlhammer K
    Acta Histochem Suppl; 1990; 40():137-42. PubMed ID: 2091041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo biosynthesis of arachidonic acid and 5,11,14-eicosatrienoic acid in the cricket Teleogryllus commodus.
    Jurenka RA; Stanley-Samuelson DW; Loher W; Blomquist GJ
    Biochim Biophys Acta; 1988 Nov; 963(1):21-7. PubMed ID: 3140900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical basis of specialization for dispersal vs. reproduction in a wing-polymorphic cricket: morph-specific metabolism of amino acids.
    Zhao Z; Zera AJ
    J Insect Physiol; 2006 Jun; 52(6):646-58. PubMed ID: 16643945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous determination of biogenic amines, their precursors and metabolites in a single brain of the cricket using high-performance liquid chromatography with amperometric detection.
    Nagao T; Tanimura T
    J Chromatogr; 1989 Nov; 496(1):39-53. PubMed ID: 2592516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurons reactive to antibodies against serotonin in the stomatogastric nervous system and in the alimentary canal of locust and crickets (Orthoptera, Insecta).
    Klemm N; Hustert R; Cantera R; Nässel DR
    Neuroscience; 1986; 17(1):247-61. PubMed ID: 3515226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lifetime olfactory memory in the cricket Gryllus bimaculatus.
    Matsumoto Y; Mizunami M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 May; 188(4):295-9. PubMed ID: 12012100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo assembly of a transcriptome for the cricket Gryllus bimaculatus prothoracic ganglion: An invertebrate model for investigating adult central nervous system compensatory plasticity.
    Fisher HP; Pascual MG; Jimenez SI; Michaelson DA; Joncas CT; Quenzer ED; Christie AE; Horch HW
    PLoS One; 2018; 13(7):e0199070. PubMed ID: 29995882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets.
    Awata H; Watanabe T; Hamanaka Y; Mito T; Noji S; Mizunami M
    Sci Rep; 2015 Nov; 5():15885. PubMed ID: 26521965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-dependent occurrence of an ascending axon on the omega neuron of the cricket, Teleogryllus oceanicus.
    Atkins G; Pollack GS
    J Comp Neurol; 1986 Jan; 243(4):527-34. PubMed ID: 3950084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Olfactory memory capacity of the cricket Gryllus bimaculatus.
    Matsumoto Y; Mizunami M
    Biol Lett; 2006 Dec; 2(4):608-10. PubMed ID: 17148301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time course of protein synthesis-dependent phase of olfactory memory in the cricket Gryllus bimaculatus.
    Matsumoto Y; Noji S; Mizunami M
    Zoolog Sci; 2003 Apr; 20(4):409-16. PubMed ID: 12719642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA synthesis in the neurosecretory cells of the brain and in the subesophagal ganglion of the house cricket (Acheta domesticus L.) Orthoptera: Gryllidae.
    Cymborowski B; Dutkowski A
    Bull Acad Pol Sci Biol; 1968; 16(8):497-9. PubMed ID: 5702583
    [No Abstract]   [Full Text] [Related]  

  • 18. Dichlorvos and acetylcholine increase 32P-labelling of phospholipids in cricket central nerve cords.
    Ross DC; Brady UE
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1986; 83(1):33-6. PubMed ID: 2869904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo biosynthesis of prostaglandins by the Australian field cricket, Teleogryllus commodus.
    Stanley-Samuelson D; Jurenka RA; Blomquist GJ; Loher W
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1986; 85(2):303-7. PubMed ID: 2879689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Descending and Ascending Signals That Maintain Rhythmic Walking Pattern in Crickets.
    Naniwa K; Aonuma H
    Front Robot AI; 2021; 8():625094. PubMed ID: 33855051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.