BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2315372)

  • 1. Centrally administered opioid antagonists, nor-binaltorphimine, 16-methyl cyprenorphine and MR2266, suppress intake of a sweet solution.
    Calcagnetti DJ; Calcagnetti RL; Fanselow MS
    Pharmacol Biochem Behav; 1990 Jan; 35(1):69-73. PubMed ID: 2315372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of appetitively and aversively motivated behavior by the kappa opioid antagonist MR2266.
    Fanselow MS; Calcagnetti DJ; Helmstetter FJ
    Behav Neurosci; 1989 Jun; 103(3):663-72. PubMed ID: 2544207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central opioid receptor subtype antagonists differentially reduce intake of saccharin and maltose dextrin solutions in rats.
    Beczkowska IW; Koch JE; Bostock ME; Leibowitz SF; Bodnar RJ
    Brain Res; 1993 Aug; 618(2):261-70. PubMed ID: 8397050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The opioid antagonist, MR2266, specifically decreases saline intake in the mouse.
    Ukai M; Nakayama S; Kameyama T
    Neuropharmacology; 1988 Oct; 27(10):1027-31. PubMed ID: 3237313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different central opioid receptor subtype antagonists modify maltose dextrin and deprivation-induced water intake in sham feeding and sham drinking rats.
    Leventhal L; Bodnar RJ
    Brain Res; 1996 Nov; 741(1-2):300-8. PubMed ID: 9001736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential modulation of angiotensin II and hypertonic saline-induced drinking by opioid receptor subtype antagonists in rats.
    Ruegg H; Hahn B; Koch JE; Bodnar RJ
    Brain Res; 1994 Jan; 635(1-2):203-10. PubMed ID: 8173956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo and in vitro studies on the opioidergic control of the secretion of gonadotrophin-releasing hormone and luteinizing hormone in sexually immature and adult male rats.
    Leposavic G; Cover PO; Buckingham JC
    Neuroendocrinology; 1991 Jun; 53(6):579-88. PubMed ID: 1652110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kappa-opioid antagonist strongly attenuates drinking of genetically polydipsic mice.
    Katafuchi T; Hattori Y; Nagatomo I; Koizumi K
    Brain Res; 1991 Apr; 546(1):1-7. PubMed ID: 1649665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that nor-binaltorphimine can function as an antagonist at multiple opioid receptor subtypes.
    Spanagel R; Almeida OF; Shippenberg TS
    Eur J Pharmacol; 1994 Oct; 264(2):157-62. PubMed ID: 7851478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central opioid receptor subtype mediation of isoproterenol-induced drinking in rats.
    Glass MJ; Hahn B; Joseph A; Bodnar RJ
    Brain Res; 1994 Sep; 657(1-2):310-4. PubMed ID: 7820634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of selective opioid peptide antagonists on the acquisition of pavlovian fear conditioning.
    Fanselow MS; Kim JJ; Young SL; Calcagnetti DJ; DeCola JP; Helmstetter FJ; Landeira-Fernandez J
    Peptides; 1991; 12(5):1033-7. PubMed ID: 1686930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delta opioid antagonist, naltrindole, selectively blocks analgesia induced by DPDPE but not DAGO or morphine.
    Calcagnetti DJ; Holtzman SG
    Pharmacol Biochem Behav; 1991 Jan; 38(1):185-90. PubMed ID: 2017444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of magnocellular oxytocin neurones to opioid antagonists in rats treated chronically with intracerebroventricular (i.c.v.) morphine.
    Leng G; Russell JA; Grossmann R
    Brain Res; 1989 Apr; 484(1-2):290-6. PubMed ID: 2713689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the effects of opiate antagonists infused into the nucleus accumbens on feeding and sucrose drinking in rats.
    Kelley AE; Bless EP; Swanson CJ
    J Pharmacol Exp Ther; 1996 Sep; 278(3):1499-507. PubMed ID: 8819538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological evidence for a motivational role of kappa-opioid systems in ethanol dependence.
    Walker BM; Koob GF
    Neuropsychopharmacology; 2008 Feb; 33(3):643-52. PubMed ID: 17473837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central opioid receptor subtype antagonists differentially alter sucrose and deprivation-induced water intake in rats.
    Beczkowska IW; Bowen WD; Bodnar RJ
    Brain Res; 1992 Sep; 589(2):291-301. PubMed ID: 1327413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General, mu and kappa opioid antagonists in the nucleus accumbens alter food intake under deprivation, glucoprivic and palatable conditions.
    Bodnar RJ; Glass MJ; Ragnauth A; Cooper ML
    Brain Res; 1995 Nov; 700(1-2):205-12. PubMed ID: 8624711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracisternal nor-binaltorphimine distinguishes central and peripheral kappa-opioid antinociception in rhesus monkeys.
    Ko MC; Johnson MD; Butelman ER; Willmont KJ; Mosberg HI; Woods JH
    J Pharmacol Exp Ther; 1999 Dec; 291(3):1113-20. PubMed ID: 10565831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tonic endogenous opioid inhibition of visceral noxious information in rabbits.
    Borgbjerg FM; Frigast C; Madsen JB
    Gastroenterology; 1996 Jul; 111(1):78-84. PubMed ID: 8698228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamic relationship between mu and kappa opioid receptors in body temperature regulation.
    Chen X; McClatchy DB; Geller EB; Tallarida RJ; Adler MW
    Life Sci; 2005 Dec; 78(4):329-33. PubMed ID: 16257420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.