These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 231538)

  • 1. Sensitive and rapid method for determination of superoxide-generating activity of blood monocytes and its use as a probe for monocyte function in cancer patients.
    Nakagawara A; Kayashima K; Tamada R; Onoue K; Ikeda K; Inokuchi K
    Gan; 1979 Dec; 70(6):829-33. PubMed ID: 231538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased superoxide (O2-)-generating activity of blood monocytes from patients with hepatic cirrhosis.
    Nakagawara A; Inokuchi K; Ikeda K; Kumashiro R; Tamada R
    Hepatogastroenterology; 1984 Oct; 31(5):201-3. PubMed ID: 6096238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superoxide anion-generating activities of macrophages as studied by using cytochalasin E and lectins as synergistic stimulants for superoxide release.
    Kayashima K; Onoue K; Nakagawara A; Minakami S
    Microbiol Immunol; 1980; 24(5):449-61. PubMed ID: 6253770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deficient superoxide-generating activity and its activation of blood monocytes in cancer patients.
    Nakagawara A; Ikeda K; Inokuchi K; Kumashiro R; Tamada R
    Cancer Lett; 1984 Mar; 22(2):157-62. PubMed ID: 6322971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide generation by human monocytes and macrophages.
    Weiss SJ; King GW; LoBuglio AF
    Am J Hematol; 1978; 4(1):1-8. PubMed ID: 207181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IFN-gamma activates superoxide anion production in blood monocytes from allergic asthmatic patients.
    Demoly P; Damon M; Michel FB; Godard P
    Ann Allergy Asthma Immunol; 1995 Aug; 75(2):162-6. PubMed ID: 7648381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of superoxide anions during phagocytosis by monocytes of uremic patients.
    Glazer T; Fishman P; Klein B; Levi J; Djaldetti M
    Nephron; 1984; 38(1):40-3. PubMed ID: 6089013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptor-mediated O2- release by alveolar macrophages and peripheral blood monocytes from smokers and nonsmokers. Priming and triggering effects of monomeric IgG, concanavalin A, N-formyl-methionyl-leucyl-phenylalanine, phorbol myristate acetate, and cytochalasin D.
    Nakashima H; Ando M; Sugimoto M; Suga M; Soda K; Araki S
    Am Rev Respir Dis; 1987 Aug; 136(2):310-5. PubMed ID: 3039878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysis of tumor cells by human blood monocytes by a mechanism independent of activation of the oxidative burst.
    Kleinerman ES; Ceccorulli LM; Bonvini E; Zicht R; Gallin JI
    Cancer Res; 1985 May; 45(5):2058-64. PubMed ID: 2985242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of reactive oxygen intermediates in human monocytes by tumour cells and their role in spontaneous monocyte cytotoxicity.
    Mytar B; Siedlar M; Wołoszyn M; Ruggiero I; Pryjma J; Zembala M
    Br J Cancer; 1999 Feb; 79(5-6):737-43. PubMed ID: 10070862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H2O2 release from human granulocytes during phagocytosis. Relationship to superoxide anion formation and cellular catabolism of H2O2: studies with normal and cytochalasin B-treated cells.
    Root RK; Metcalf JA
    J Clin Invest; 1977 Dec; 60(6):1266-79. PubMed ID: 199619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that proteases are involved in superoxide production by human polymorphonuclear leukocytes and monocytes.
    Kitagawa S; Takaku F; Sakamoto S
    J Clin Invest; 1980 Jan; 65(1):74-81. PubMed ID: 6243143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuropeptides induced a pronounced and statin-sensitive dysregulation of mevalonate cycle in human monocytes of patients with hypercholesterolemia.
    Kosztáczky B; Fóris G; Seres I; Balogh Z; Fülöp P; Koncsos P; Paragh G
    Neuropeptides; 2006 Oct; 40(5):309-16. PubMed ID: 17049599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous generation of superoxide anion by human lens proteins and by calf lens proteins ascorbylated in vitro.
    Linetsky M; James HL; Ortwerth BJ
    Exp Eye Res; 1999 Aug; 69(2):239-48. PubMed ID: 10433859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis.
    Goldstein IM; Roos D; Kaplan HB; Weissmann G
    J Clin Invest; 1975 Nov; 56(5):1155-63. PubMed ID: 171281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of human peripheral blood monocyte superoxide release by interferon-gamma and lipopolysaccharide.
    Salisbury SM; Calhoun WJ
    Wis Med J; 1990 Jun; 89(6):271-4. PubMed ID: 2163140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxide anion participation in human monocyte-mediated oxidation of low-density lipoprotein and conversion of low-density lipoprotein to a cytotoxin.
    Cathcart MK; McNally AK; Morel DW; Chisolm GM
    J Immunol; 1989 Mar; 142(6):1963-9. PubMed ID: 2537865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide generation by human blood leucocytes under the effect of cytolytic agents.
    Ginsburg I; Borinski R; Pabst M
    Int J Tissue React; 1985; 7(2):143-7. PubMed ID: 2993186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticosteroids increase superoxide anion production by rat liver microsomes.
    Nelson DH; Ruhmann-Wennhold A
    J Clin Invest; 1975 Oct; 56(4):1062-5. PubMed ID: 239969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of monocyte oxidative response by phenolic glycolipid I of Mycobacterium leprae.
    Vachula M; Holzer TJ; Andersen BR
    J Immunol; 1989 Mar; 142(5):1696-701. PubMed ID: 2537362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.