These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 231538)

  • 21. Cooperation of cytochalasin D and anti-microtubular agents in stimulating superoxide anion production in polymorphonuclear leukocytes.
    Okamura N; Hanakura K; Kodakari M; Ishibashi S
    J Biochem; 1980 Jul; 88(1):139-44. PubMed ID: 6251033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decreased superoxide anion and hydrogen peroxide production by neutrophils and monocytes in human immunodeficiency virus-infected children and adults.
    Chen TP; Roberts RL; Wu KG; Ank BJ; Stiehm ER
    Pediatr Res; 1993 Oct; 34(4):544-50. PubMed ID: 8255691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impaired oxidative burst does not affect human monocyte tumoricidal activity.
    Chen AR; Koren HS
    J Immunol; 1985 Mar; 134(3):1909-13. PubMed ID: 2981928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of human neutrophil and monocyte chemotaxis and superoxide responses by recombinant TNF-alpha and GM-CSF.
    Kharazmi A; Nielsen H; Bendtzen K
    Immunobiology; 1988 Sep; 177(4-5):363-70. PubMed ID: 2848761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superoxide generation by digitonin-stimulated guinea pig granulocytes. A basis for a continuous assay for monitoring superoxide production and for the study of the activation of the generating system.
    Cohen HJ; Chovaniec ME
    J Clin Invest; 1978 Apr; 61(4):1081-7. PubMed ID: 26695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activated human monocytes oxidize low-density lipoprotein by a lipoxygenase-dependent pathway.
    McNally AK; Chisolm GM; Morel DW; Cathcart MK
    J Immunol; 1990 Jul; 145(1):254-9. PubMed ID: 2162888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functions of human monocyte and lymphocyte subsets obtained by countercurrent centrifugal elutriation: differing functional capacities of human monocyte subsets.
    Yasaka T; Mantich NM; Boxer LA; Baehner RL
    J Immunol; 1981 Oct; 127(4):1515-8. PubMed ID: 6268707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induction of in vitro tumoricidal activity in alveolar macrophages and monocytes from patients with lung cancer.
    Thomassen MJ; Wiedemann HP; Barna BP; Farmer M; Ahmad M
    Cancer Res; 1988 Jul; 48(14):3949-53. PubMed ID: 2838166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of the superoxide-releasing response in human polymorphonuclear leukocytes and monocytes.
    Kitagawa S; Takaku F; Sakamoto S
    J Immunol; 1980 Jul; 125(1):359-64. PubMed ID: 6247398
    [No Abstract]   [Full Text] [Related]  

  • 30. Human mononuclear phagocyte antiprotozoal mechanisms: oxygen-dependent vs oxygen-independent activity against intracellular Toxoplasma gondii.
    Murray HW; Rubin BY; Carriero SM; Harris AM; Jaffee EA
    J Immunol; 1985 Mar; 134(3):1982-8. PubMed ID: 2981929
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of monocyte oxidative metabolism: chemotactic factor enhancement of superoxide release, hydroxyl radical generation, and chemiluminescence.
    Janco RL; English D
    J Lab Clin Med; 1983 Dec; 102(6):890-8. PubMed ID: 6315837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. IFN-gamma and LPS overcome glucocorticoid inhibition of priming for superoxide release in human monocytes. Evidence that secretion of IL-1 and tumor necrosis factor-alpha is not essential for monocyte priming.
    Szefler SJ; Norton CE; Ball B; Gross JM; Aida Y; Pabst MJ
    J Immunol; 1989 Jun; 142(11):3985-92. PubMed ID: 2541203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cryopreservation of reduced cytochrome C for determination of N-formyl-methionyl-leucyl-phenylalanine-stimulated superoxide anion production in human whole blood.
    Choukèr A; Martignoni A; DaSilva L; Diem H; Christ F; Peter K; Thiel M
    Eur J Appl Physiol; 2002 Aug; 87(4-5):365-72. PubMed ID: 12172875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of the growth and differentiation of a human monocytic cell line by lymphokines. I. Induction of superoxide anion production and chemiluminescence.
    Clement LT; Lehmeyer JE
    J Immunol; 1983 Jun; 130(6):2763-6. PubMed ID: 6304190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time dependence of transmembrane potential changes and intracellular calcium flux in stimulated human monocytes.
    Bernardo J; Brink HF; Simons ER
    J Cell Physiol; 1988 Jan; 134(1):131-6. PubMed ID: 2826501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differences in the ability of human peripheral blood monocytes and in vitro monocyte-derived macrophages to produce superoxide anion: studies with cells from normals and patients with chronic granulomatous disease.
    Musson RA; McPhail LC; Shafran H; Johnston RB
    J Reticuloendothel Soc; 1982 Mar; 31(3):261-6. PubMed ID: 6281432
    [No Abstract]   [Full Text] [Related]  

  • 37. Effect of 1,25-dihydroxyvitamin D3, lipopolysaccharide, or lipoteichoic acid on the expression of NADPH oxidase components in cultured human monocytes.
    Levy R; Malech HL
    J Immunol; 1991 Nov; 147(9):3066-71. PubMed ID: 1655903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of human monocyte activation via the 40-kDa Fc receptor for IgG.
    MacIntyre EA; Roberts PJ; Abdul-Gaffar R; O'Flynn K; Pilkington GR; Farace F; Morgan J; Linch DC
    J Immunol; 1988 Dec; 141(12):4333-43. PubMed ID: 2848894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence that the superoxide-generating system of human leukocytes is associated with the cell surface.
    Goldstein IM; Cerqueira M; Lind S; Kaplan HB
    J Clin Invest; 1977 Feb; 59(2):249-54. PubMed ID: 188867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid killing of actinomycin D-treated tumor cells by human monocytes. II. Cytotoxicity is independent of secretion of reactive oxygen intermediates and is suppressed by protease inhibitors.
    Colotta F; Bersani L; Lazzarin A; Poli G; Mantovani A
    J Immunol; 1985 May; 134(5):3524-31. PubMed ID: 4038989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.