BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23154410)

  • 1. Distinct requirements for wnt9a and irf6 in extension and integration mechanisms during zebrafish palate morphogenesis.
    Dougherty M; Kamel G; Grimaldi M; Gfrerer L; Shubinets V; Ethier R; Hickey G; Cornell RA; Liao EC
    Development; 2013 Jan; 140(1):76-81. PubMed ID: 23154410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirement for frzb and fzd7a in cranial neural crest convergence and extension mechanisms during zebrafish palate and jaw morphogenesis.
    Kamel G; Hoyos T; Rochard L; Dougherty M; Kong Y; Tse W; Shubinets V; Grimaldi M; Liao EC
    Dev Biol; 2013 Sep; 381(2):423-33. PubMed ID: 23806211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zebrafish wnt9a is expressed in pharyngeal ectoderm and is required for palate and lower jaw development.
    Curtin E; Hickey G; Kamel G; Davidson AJ; Liao EC
    Mech Dev; 2011; 128(1-2):104-15. PubMed ID: 21093584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of Wnt pathway genes wls, wnt9a, wnt5b, frzb and gpc4 in regulating convergent-extension during zebrafish palate morphogenesis.
    Rochard L; Monica SD; Ling IT; Kong Y; Roberson S; Harland R; Halpern M; Liao EC
    Development; 2016 Jul; 143(14):2541-7. PubMed ID: 27287801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An
    Carroll SH; Macias Trevino C; Li EB; Kawasaki K; Myers N; Hallett SA; Alhazmi N; Cotney J; Carstens RP; Liao EC
    Development; 2020 Dec; 147(24):. PubMed ID: 33234718
    [No Abstract]   [Full Text] [Related]  

  • 6. Expression profiles of cIRF6, cLHX6 and cLHX7 in the facial primordia suggest specific roles during primary palatogenesis.
    Washbourne BJ; Cox TC
    BMC Dev Biol; 2006 Mar; 6():18. PubMed ID: 16563169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IRF6 is the mediator of TGFβ3 during regulation of the epithelial mesenchymal transition and palatal fusion.
    Ke CY; Xiao WL; Chen CM; Lo LJ; Wong FH
    Sci Rep; 2015 Aug; 5():12791. PubMed ID: 26240017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization of craniofacial development in the sox10: kaede transgenic zebrafish line using time-lapse confocal microscopy.
    Gfrerer L; Dougherty M; Liao EC
    J Vis Exp; 2013 Sep; (79):e50525. PubMed ID: 24121214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of IRF6 and Jagged2 signalling is essential for controlling palatal adhesion and fusion competence.
    Richardson RJ; Dixon J; Jiang R; Dixon MJ
    Hum Mol Genet; 2009 Jul; 18(14):2632-42. PubMed ID: 19439425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
    Xu X; Han J; Ito Y; Bringas P; Urata MM; Chai Y
    Dev Biol; 2006 Sep; 297(1):238-48. PubMed ID: 16780827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y
    Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Closing the Gap: Mouse Models to Study Adhesion in Secondary Palatogenesis.
    Lough KJ; Byrd KM; Spitzer DC; Williams SE
    J Dent Res; 2017 Oct; 96(11):1210-1220. PubMed ID: 28817360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice.
    Li C; Lan Y; Krumlauf R; Jiang R
    J Dent Res; 2017 Oct; 96(11):1273-1281. PubMed ID: 28692808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis.
    Eberhart JK; He X; Swartz ME; Yan YL; Song H; Boling TC; Kunerth AK; Walker MB; Kimmel CB; Postlethwait JH
    Nat Genet; 2008 Mar; 40(3):290-8. PubMed ID: 18264099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examination of a palatogenic gene program in zebrafish.
    Swartz ME; Sheehan-Rooney K; Dixon MJ; Eberhart JK
    Dev Dyn; 2011 Sep; 240(9):2204-20. PubMed ID: 22016187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone deacetylase-4 is required during early cranial neural crest development for generation of the zebrafish palatal skeleton.
    DeLaurier A; Nakamura Y; Braasch I; Khanna V; Kato H; Wakitani S; Postlethwait JH; Kimmel CB
    BMC Dev Biol; 2012 Jun; 12():16. PubMed ID: 22676467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development.
    Bush JO; Jiang R
    Development; 2012 Jan; 139(2):231-43. PubMed ID: 22186724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of the Zeb family prevents murine palatogenesis through regulation of apoptosis and the cell cycle.
    Shin JO; Lee JM; Bok J; Jung HS
    Biochem Biophys Res Commun; 2018 Nov; 506(1):223-230. PubMed ID: 30343888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MEMO1 drives cranial endochondral ossification and palatogenesis.
    Van Otterloo E; Feng W; Jones KL; Hynes NE; Clouthier DE; Niswander L; Williams T
    Dev Biol; 2016 Jul; 415(2):278-295. PubMed ID: 26746790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification.
    Ling IT; Rochard L; Liao EC
    Dev Biol; 2017 Jan; 421(2):219-232. PubMed ID: 27908786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.