These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1089 related articles for article (PubMed ID: 23155861)
21. Projected ozone trends and changes in the ozone-precursor relationship in the South Coast Air Basin in response to varying reductions of precursor emissions. Fujita EM; Campbell DE; Stockwell WR; Saunders E; Fitzgerald R; Perea R J Air Waste Manag Assoc; 2016 Feb; 66(2):201-14. PubMed ID: 26514212 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of ozone-nitrogen oxides-volatile organic compound sensitivity of Cincinnati, Ohio. Torres-Jardón R; Keener TC J Air Waste Manag Assoc; 2006 Mar; 56(3):322-33. PubMed ID: 16573195 [TBL] [Abstract][Full Text] [Related]
23. Control of ozone precursors in a complex industrial terrain by using multiscale-nested air quality models with fine spatial resolution (1 km2). Jiménez P; Parra R; Baldasano JM J Air Waste Manag Assoc; 2005 Aug; 55(8):1085-99. PubMed ID: 16187579 [TBL] [Abstract][Full Text] [Related]
24. PM Wu Y; Gu B; Erisman JW; Reis S; Fang Y; Lu X; Zhang X Environ Pollut; 2016 Nov; 218():86-94. PubMed ID: 27552041 [TBL] [Abstract][Full Text] [Related]
25. Source apportionment of VOCs and their impact on air quality and health in the megacity of Seoul. Song SK; Shon ZH; Kang YH; Kim KH; Han SB; Kang M; Bang JH; Oh I Environ Pollut; 2019 Apr; 247():763-774. PubMed ID: 30721867 [TBL] [Abstract][Full Text] [Related]
26. Modeling variability in air pollution-related health damages from individual airport emissions. Penn SL; Boone ST; Harvey BC; Heiger-Bernays W; Tripodis Y; Arunachalam S; Levy JI Environ Res; 2017 Jul; 156():791-800. PubMed ID: 28501677 [TBL] [Abstract][Full Text] [Related]
27. Sensitivity analysis of ground-level ozone concentration to emission changes in two urban regions of southeast Texas. Lin CJ; Ho TC; Chu HW; Yang H; Chandru S; Krishnarajanagar N; Chiou P; Hopper JR J Environ Manage; 2005 Jun; 75(4):315-23. PubMed ID: 15854725 [TBL] [Abstract][Full Text] [Related]
28. Current and future linked responses of ozone and PM2.5 to emission controls. Liao KJ; Tagaris E; Napelenok SL; Manomaiphiboon K; Woo JH; Amar P; He S; Russell AG Environ Sci Technol; 2008 Jul; 42(13):4670-5. PubMed ID: 18677989 [TBL] [Abstract][Full Text] [Related]
29. Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China. An J; Zou J; Wang J; Lin X; Zhu B Environ Sci Pollut Res Int; 2015 Dec; 22(24):19607-17. PubMed ID: 26272292 [TBL] [Abstract][Full Text] [Related]
30. Development and application of an aerosol screening model for size-resolved urban aerosols. Stanier CO; Lee SR; Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039 [TBL] [Abstract][Full Text] [Related]
31. Response surface modeling-based source contribution analysis and VOC emission control policy assessment in a typical ozone-polluted urban Shunde, China. You Z; Zhu Y; Jang C; Wang S; Gao J; Lin CJ; Li M; Zhu Z; Wei H; Yang W J Environ Sci (China); 2017 Jan; 51():294-304. PubMed ID: 28115141 [TBL] [Abstract][Full Text] [Related]
32. WRF-SMOKE-CMAQ modeling system for air quality evaluation in São Paulo megacity with a 2008 experimental campaign data. de Almeida Albuquerque TT; de Fátima Andrade M; Ynoue RY; Moreira DM; Andreão WL; Dos Santos FS; Nascimento EGS Environ Sci Pollut Res Int; 2018 Dec; 25(36):36555-36569. PubMed ID: 30374719 [TBL] [Abstract][Full Text] [Related]
33. Contributions of local emissions and regional background to summertime ozone in central China. Su F; Xu Q; Yin S; Wang K; Liu G; Wang P; Kang M; Zhang R; Ying Q J Environ Manage; 2023 Jul; 338():117778. PubMed ID: 37019021 [TBL] [Abstract][Full Text] [Related]
34. Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions. Hogrefe C; Isukapalli SS; Tang X; Georgopoulos PG; He S; Zalewsky EE; Hao W; Ku JY; Key T; Sistla G J Air Waste Manag Assoc; 2011 Jan; 61(1):92-108. PubMed ID: 21305893 [TBL] [Abstract][Full Text] [Related]
35. Source apportionment of emissions from light-duty gasoline vehicles and other sources in the United States for ozone and particulate matter. Vijayaraghavan K; Lindhjem C; Koo B; DenBleyker A; Tai E; Shah T; Alvarez Y; Yarwood G J Air Waste Manag Assoc; 2016 Feb; 66(2):98-119. PubMed ID: 26563640 [TBL] [Abstract][Full Text] [Related]
36. Air quality modeling of interpollutant trading for ozone precursors in an urban area. Wang L; Allen DT; McDonald-Buller EC J Air Waste Manag Assoc; 2005 Oct; 55(10):1543-57. PubMed ID: 16295279 [TBL] [Abstract][Full Text] [Related]
37. Quantifying the sources of ozone, fine particulate matter, and regional haze in the Southeastern United States. Odman MT; Hu Y; Russell AG; Hanedar A; Boylan JW; Brewer PF J Environ Manage; 2009 Jul; 90(10):3155-68. PubMed ID: 19556055 [TBL] [Abstract][Full Text] [Related]
38. A comprehensive study on ozone pollution in a megacity in North China Plain during summertime: Observations, source attributions and ozone sensitivity. Sun J; Shen Z; Wang R; Li G; Zhang Y; Zhang B; He K; Tang Z; Xu H; Qu L; Sai Hang Ho S; Liu S; Cao J Environ Int; 2021 Jan; 146():106279. PubMed ID: 33276317 [TBL] [Abstract][Full Text] [Related]
39. Modeling ozone and aerosol formation and transport in the pacific northwest with the community Multi-Scale Air Quality (CMAQ) modeling system. O'Neill SM; Lamb BK; Chen J; Claiborn C; Finn D; Otterson S; Figueroa C; Bowman C; Boyer M; Wilson R; Arnold J; Aalbers S; Stocum J; Swab C; Stoll M; Dubois M; Anderson M Environ Sci Technol; 2006 Feb; 40(4):1286-99. PubMed ID: 16572788 [TBL] [Abstract][Full Text] [Related]
40. Potential air toxics hot spots in truck terminals and cabs. Smith TJ; Davis ME; Hart JE; Blicharz A; Laden F; Garshick E; Res Rep Health Eff Inst; 2012 Dec; (172):5-82. PubMed ID: 23409510 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]