BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23156)

  • 1. 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile. Effects of pH on its binding to liposomes and evidence for formation of a ternary complex with valinomycin and potassium ion.
    Yamaguchi A; Anraku Y; Ikegami S
    Biochim Biophys Acta; 1978 Jan; 501(1):150-64. PubMed ID: 23156
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanism of 3,5-di-tert-butyl-4-hydroxybenzylidene-malononitrile-mediated proton uptake in liposomes. Kinetics of proton uptake compensated by valinomycin-induced K+-efflux.
    Yamaguchi A; Anraku Y
    Biochim Biophys Acta; 1978 Jan; 501(1):136-49. PubMed ID: 23155
    [No Abstract]   [Full Text] [Related]  

  • 3. Mutual inactivation of valinomycin and protonophores by complex formation in liposomal membranes.
    Krishnamoorthy G
    FEBS Lett; 1988 May; 232(1):199-203. PubMed ID: 2835269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some biochemical and physiochemical properties of the potent uncoupler SF 6847 (3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile).
    Terada H
    Biochim Biophys Acta; 1975 Jun; 387(3):519-32. PubMed ID: 237542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester.
    Antonenko YN; Rokitskaya TI; Huczyński A
    Biochim Biophys Acta; 2015 Apr; 1848(4):995-1004. PubMed ID: 25600660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some factors affecting the valinomycin-induced leak from liposomes.
    Blok MC; De Gier J; Van Deenen LL
    Biochim Biophys Acta; 1974 Oct; 367(2):202-9. PubMed ID: 4371835
    [No Abstract]   [Full Text] [Related]  

  • 7. Kinetics of the valinomycin-induced potassium ion leak from liposomes with potassium thiocyanate enclosed.
    Blok MC; De Gier J; Van Deenen LL
    Biochim Biophys Acta; 1974 Oct; 367(2):210-24. PubMed ID: 4473216
    [No Abstract]   [Full Text] [Related]  

  • 8. Cation permeability of liposomes as a function of the chemical composition of the lipid bilayers.
    Scarpa A; de Gier J
    Biochim Biophys Acta; 1971 Sep; 241(3):789-97. PubMed ID: 5146575
    [No Abstract]   [Full Text] [Related]  

  • 9. The influence of diffusion potentials across liposomal membranes on the fluorescence intensity of 1-anilinonaphthalene-8-sulphonate.
    Bakker EP; van Dam K
    Biochim Biophys Acta; 1974 Mar; 339(2):157-63. PubMed ID: 4857150
    [No Abstract]   [Full Text] [Related]  

  • 10. Construction of mitochondrial H+ -transporting system in proteoliposomes.
    Shchipakin V; Chuchlova E; Evtodienko Y
    Biochem Biophys Res Commun; 1976 Mar; 69(1):123-7. PubMed ID: 4070
    [No Abstract]   [Full Text] [Related]  

  • 11. Proton flux in large unilamellar vesicles in response to membrane potentials and pH gradients.
    Redelmeier TE; Mayer LD; Wong KF; Bally MB; Cullis PR
    Biophys J; 1989 Aug; 56(2):385-93. PubMed ID: 2775833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloride diffusion from liposomes.
    Nicholls P; Miller N
    Biochim Biophys Acta; 1974 Jul; 356(2):184-98. PubMed ID: 4859250
    [No Abstract]   [Full Text] [Related]  

  • 13. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin.
    Levitt DG; Elias SR; Hautman JM
    Biochim Biophys Acta; 1978 Sep; 512(2):436-51. PubMed ID: 81687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of surface charge density on valinomycin-K+ complex formation in model membranes.
    Caspers J; Landuyt-Caufriez M; Deleers M; Ruysschaert JM
    Biochim Biophys Acta; 1979 Jun; 554(1):23-38. PubMed ID: 582285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stacking of safranine in liposomes during valinomycin-induced efflux of potassium ions.
    Akerman KE; Saris NE
    Biochim Biophys Acta; 1976 Apr; 426(4):624-9. PubMed ID: 1259986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Second FEBS-Ferdinand Springer lecture: Membrane active complexones. Chemistry and biological function.
    Ovchinnikov YA
    FEBS Lett; 1974 Aug; 44(1):1-21. PubMed ID: 4854212
    [No Abstract]   [Full Text] [Related]  

  • 17. On the stoichiometry between uncouplers of oxidative phosphorylation and respiratory chains. The catalytic action of SF 6847 (3,5-di-tert-butyl-4-hydroxy-benzylidenemalononitrile).
    Terada H; VAN Dam K
    Biochim Biophys Acta; 1975 Jun; 387(3):507-18. PubMed ID: 1138887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-phase partition studies of alkali cation complexation by ionophores.
    Haynes DH; Pressman BC
    J Membr Biol; 1974; 18(1):1-21. PubMed ID: 4855284
    [No Abstract]   [Full Text] [Related]  

  • 19. Permeabilizing action of an antimicrobial lactoferricin-derived peptide on bacterial and artificial membranes.
    Aguilera O; Ostolaza H; Quirós LM; Fierro JF
    FEBS Lett; 1999 Dec; 462(3):273-7. PubMed ID: 10622710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of the presence of valinomycin on the interfacial tension of lecithin membrane.
    Petelska AD; Naumowicz M; Figaszewski ZA
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):158-62. PubMed ID: 16051474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.