These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

594 related articles for article (PubMed ID: 23156616)

  • 1. Driving with a partially autonomous forward collision warning system: how do drivers react?
    Muhrer E; Reinprecht K; Vollrath M
    Hum Factors; 2012 Oct; 54(5):698-708. PubMed ID: 23156616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age and gender differences in time to collision at braking from the 100-Car Naturalistic Driving Study.
    Montgomery J; Kusano KD; Gabler HC
    Traffic Inj Prev; 2014; 15 Suppl 1():S15-20. PubMed ID: 25307380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulator training with a forward collision warning system: effects on driver-system interactions and driver trust.
    Koustanaï A; Cavallo V; Delhomme P; Mas A
    Hum Factors; 2012 Oct; 54(5):709-21. PubMed ID: 23156617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of tactile, visual, and auditory warnings for rear-end collision prevention in simulated driving.
    Scott JJ; Gray R
    Hum Factors; 2008 Apr; 50(2):264-75. PubMed ID: 18516837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brake reactions of distracted drivers to pedestrian Forward Collision Warning systems.
    Lubbe N
    J Safety Res; 2017 Jun; 61():23-32. PubMed ID: 28454868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Expected Crash and Injury Reduction from Production Forward Collision and Lane Departure Warning Systems.
    Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S109-14. PubMed ID: 26436219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Practice makes better - Learning effects of driving with a multi-stage collision warning.
    Winkler S; Kazazi J; Vollrath M
    Accid Anal Prev; 2018 Aug; 117():398-409. PubMed ID: 29477461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Driver Behavior During Overtaking Maneuvers from the 100-Car Naturalistic Driving Study.
    Chen R; Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S176-81. PubMed ID: 26436229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy-truck drivers' following behavior with intervention of an integrated, in-vehicle crash warning system: a field evaluation.
    Bao S; LeBlanc DJ; Sayer JR; Flannagan C
    Hum Factors; 2012 Oct; 54(5):687-97. PubMed ID: 23156615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population distributions of time to collision at brake application during car following from naturalistic driving data.
    Kusano KD; Chen R; Montgomery J; Gabler HC
    J Safety Res; 2015 Sep; 54():95-104. PubMed ID: 26403908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effectiveness of forward collision warning and autonomous emergency braking systems in reducing front-to-rear crash rates.
    Cicchino JB
    Accid Anal Prev; 2017 Feb; 99(Pt A):142-152. PubMed ID: 27898367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive forward collision warnings: The impact of imperfect technology on behavioral adaptation, warning effectiveness and acceptance.
    Reinmueller K; Steinhauser M
    Accid Anal Prev; 2019 Jul; 128():217-229. PubMed ID: 31063907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaze position modulates the effectiveness of forward collision warnings for drowsy drivers.
    Gaspar JG; Schwarz CW; Brown TL; Kang J
    Accid Anal Prev; 2019 May; 126():25-30. PubMed ID: 29277383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adverse Behavioral Adaptation to Adaptive Forward Collision Warning Systems: An Investigation of Primary and Secondary Task Performance.
    Reinmueller K; Kiesel A; Steinhauser M
    Accid Anal Prev; 2020 Oct; 146():105718. PubMed ID: 32847736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of age and proximity warning devices on collision avoidance in simulated driving.
    Kramer AF; Cassavaugh N; Horrey WJ; Becic E; Mayhugh JL
    Hum Factors; 2007 Oct; 49(5):935-49. PubMed ID: 17915608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expectations while car following--the consequences for driving behaviour in a simulated driving task.
    Muhrer E; Vollrath M
    Accid Anal Prev; 2010 Nov; 42(6):2158-64. PubMed ID: 20728676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electrophysiological study of the impact of a Forward Collision Warning System in a simulator driving task.
    Bueno M; Fabrigoule C; Deleurence P; Ndiaye D; Fort A
    Brain Res; 2012 Aug; 1470():69-79. PubMed ID: 22765914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous emergency braking systems adapted to snowy road conditions improve drivers' perceived safety and trust.
    Koglbauer I; Holzinger J; Eichberger A; Lex C
    Traffic Inj Prev; 2018 Apr; 19(3):332-337. PubMed ID: 29227692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collision warning timing, driver distraction, and driver response to imminent rear-end collisions in a high-fidelity driving simulator.
    Lee JD; McGehee DV; Brown TL; Reyes ML
    Hum Factors; 2002; 44(2):314-34. PubMed ID: 12452276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eye movement and brake reactions to real world brake-capacity forward collision warnings--a naturalistic driving study.
    Wege C; Will S; Victor T
    Accid Anal Prev; 2013 Sep; 58():259-70. PubMed ID: 23068426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.