These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
67 related articles for article (PubMed ID: 23156750)
21. Terbutaline enantiomer separation and quantification by complexation and field asymmetric ion mobility spectrometry-tandem mass spectrometry. Mie A; Ray A; Axelsson BO; Jörntén-Karlsson M; Reimann CT Anal Chem; 2008 Jun; 80(11):4133-40. PubMed ID: 18447322 [TBL] [Abstract][Full Text] [Related]
22. Theoretical and experimental study on the effect of scanning speed on FAIMS peaks. Hu J; Liu Y; Jin J; Wang H; Li S; Chen C J Chromatogr A; 2024 May; 1722():464903. PubMed ID: 38615559 [TBL] [Abstract][Full Text] [Related]
23. Compensation voltage shifting in high-field asymmetric waveform ion mobility spectrometry-mass spectrometry. Kolakowski BM; McCooeye MA; Mester Z Rapid Commun Mass Spectrom; 2006; 20(22):3319-29. PubMed ID: 17044119 [TBL] [Abstract][Full Text] [Related]
24. High sensitivity field asymmetric ion mobility spectrometer. Chavarria MA; Matheoud AV; Marmillod P; Liu Y; Kong D; Brugger J; Boero G Rev Sci Instrum; 2017 Mar; 88(3):035115. PubMed ID: 28372433 [TBL] [Abstract][Full Text] [Related]
25. A high-performance standalone planar FAIMS system for effective detection of chemical warfare agents via TSPSO algorithm. Hao J; Feng R; Li J; Gao W; Yu J; Tang K Talanta; 2024 Mar; 269():125516. PubMed ID: 38070286 [TBL] [Abstract][Full Text] [Related]
26. Trace level impurity method development with high-field asymmetric waveform ion mobility spectrometry: systematic study of factors affecting the performance. Champarnaud E; Laures AM; Borman PJ; Chatfield MJ; Kapron JT; Harrison M; Wolff JC Rapid Commun Mass Spectrom; 2009 Jan; 23(1):181-93. PubMed ID: 19065601 [TBL] [Abstract][Full Text] [Related]
27. Enantiomer separation of amino acids by complexation with chiral reference compounds and high-field asymmetric waveform ion mobility spectrometry: preliminary results and possible limitations. Mie A; Jörntén-Karlsson M; Axelsson BO; Ray A; Reimann CT Anal Chem; 2007 Apr; 79(7):2850-8. PubMed ID: 17326611 [TBL] [Abstract][Full Text] [Related]
28. Coupling capillary electrophoresis and high-field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of complex lipopolysaccharides. Li J; Purves RW; Richards JC Anal Chem; 2004 Aug; 76(16):4676-83. PubMed ID: 15307776 [TBL] [Abstract][Full Text] [Related]
29. Nontarget analysis of urine by electrospray ionization-high field asymmetric waveform ion mobility-tandem mass spectrometry. Beach DG; Gabryelski W Anal Chem; 2011 Dec; 83(23):9107-13. PubMed ID: 21978137 [TBL] [Abstract][Full Text] [Related]
30. Predicting compensation voltage for singly-charged ions in high-field asymmetric waveform ion mobility spectrometry (FAIMS). Aksenov AA; Kapron J; Davis CE J Am Soc Mass Spectrom; 2012 Oct; 23(10):1794-8. PubMed ID: 22872526 [TBL] [Abstract][Full Text] [Related]
31. Application and integration of deep learning in FAIMS for identifying acetone concentration. Zhao L; Zhang R; Zeng H; Shao Y; Du X; Li H Anal Biochem; 2024 Apr; 687():115427. PubMed ID: 38123110 [TBL] [Abstract][Full Text] [Related]
32. Rapid separation and quantitative analysis of peptides using a new nanoelectrospray- differential mobility spectrometer-mass spectrometer system. Levin DS; Miller RA; Nazarov EG; Vouros P Anal Chem; 2006 Aug; 78(15):5443-52. PubMed ID: 16878881 [TBL] [Abstract][Full Text] [Related]
33. Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Kolakowski BM; Mester Z Analyst; 2007 Sep; 132(9):842-64. PubMed ID: 17710259 [TBL] [Abstract][Full Text] [Related]
34. Understanding and designing field asymmetric waveform ion mobility spectrometry separations in gas mixtures. Shvartsburg AA; Tang K; Smith RD Anal Chem; 2004 Dec; 76(24):7366-74. PubMed ID: 15595881 [TBL] [Abstract][Full Text] [Related]
35. Ion peak narrowing by applying additional AC voltage (ripple voltage) to FAIMS extractor electrode. Pervukhin VV; Sheven DG J Am Soc Mass Spectrom; 2010 Jan; 21(1):47-52. PubMed ID: 19819165 [TBL] [Abstract][Full Text] [Related]
36. Miniaturized ultra high field asymmetric waveform ion mobility spectrometry combined with mass spectrometry for peptide analysis. Brown LJ; Toutoungi DE; Devenport NA; Reynolds JC; Kaur-Atwal G; Boyle P; Creaser CS Anal Chem; 2010 Dec; 82(23):9827-34. PubMed ID: 21049936 [TBL] [Abstract][Full Text] [Related]
37. Separation of cisplatin and its hydrolysis products using electrospray ionization high-field asymmetric waveform ion mobility spectrometry coupled with ion trap mass spectrometry. Cui M; Ding L; Mester Z Anal Chem; 2003 Nov; 75(21):5847-53. PubMed ID: 14588025 [TBL] [Abstract][Full Text] [Related]
38. Enhanced analyte detection using in-source fragmentation of field asymmetric waveform ion mobility spectrometry-selected ions in combination with time-of-flight mass spectrometry. Brown LJ; Smith RW; Toutoungi DE; Reynolds JC; Bristow AW; Ray A; Sage A; Wilson ID; Weston DJ; Boyle B; Creaser CS Anal Chem; 2012 May; 84(9):4095-103. PubMed ID: 22455620 [TBL] [Abstract][Full Text] [Related]
39. Application of effective potential approach to ion dynamics investigation in field asymmetric ion mobility spectrometry conditions. Nikolaev EN; Vedenov AA Eur J Mass Spectrom (Chichester); 2009; 15(2):343-8. PubMed ID: 19423919 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of high-field asymmetric waveform ion mobility spectrometry coupled to nanoelectrospray ionization for bioanalysis in drug discovery. Hatsis P; Brockman AH; Wu JT Rapid Commun Mass Spectrom; 2007; 21(14):2295-300. PubMed ID: 17577878 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]