BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23157295)

  • 21. Pre-Steady-State and Steady-State Kinetic Analysis of Butyrylcholinesterase-Catalyzed Hydrolysis of Mirabegron, an Arylacylamide Drug.
    Shaihutdinova Z; Masson P
    Molecules; 2024 May; 29(10):. PubMed ID: 38792217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of active sites of butyrylcholinesterase and acetylcholinesterase based on inhibition by geometric isomers of benzene-di-N-substituted carbamates.
    Chiou SY; Huang CF; Hwang MT; Lin G
    J Biochem Mol Toxicol; 2009; 23(5):303-8. PubMed ID: 19827033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of a pseudocholinesterase purified from surgeonfish tissues confirms the atypical nature of this enzyme.
    Leibel WS
    J Exp Zool; 1988 Sep; 247(3):198-208. PubMed ID: 3183591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural approach to the aging of phosphylated cholinesterases.
    Masson P; Nachon F; Lockridge O
    Chem Biol Interact; 2010 Sep; 187(1-3):157-62. PubMed ID: 20338153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.
    Johnson JL; Cusack B; Davies MP; Fauq A; Rosenberry TL
    Biochemistry; 2003 May; 42(18):5438-52. PubMed ID: 12731886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic analysis of butyrylcholinesterase-catalyzed hydrolysis of acetanilides.
    Masson P; Froment MT; Gillon E; Nachon F; Darvesh S; Schopfer LM
    Biochim Biophys Acta; 2007 Sep; 1774(9):1139-47. PubMed ID: 17690023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative structure-activity relationships for the pre-steady state acetylcholinesterase inhibition by carbamates.
    Lin G; Liao WC; Chan CH; Wu YH; Tsai HJ; Hsieh CW
    J Biochem Mol Toxicol; 2004; 18(6):353-60. PubMed ID: 15674842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-course of human cholinesterases-catalyzed competing substrate kinetics.
    Mukhametgalieva AR; Aglyamova AR; Lushchekina SV; Goličnik M; Masson P
    Chem Biol Interact; 2019 Sep; 310():108702. PubMed ID: 31247192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of muscle cholinesterases from two demersal flatfish collected near a municipal wastewater outfall in Southern California.
    Rodríguez-Fuentes G; Armstrong J; Schlenk D
    Ecotoxicol Environ Saf; 2008 Mar; 69(3):466-71. PubMed ID: 17659776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cholinesterase from the common prawn (Palaemon serratus) eyes: catalytic properties and sensitivity to organophosphate and carbamate compounds.
    Frasco MF; Fournier D; Carvalho F; Guilhermino L
    Aquat Toxicol; 2006 May; 77(4):412-21. PubMed ID: 16497396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and evaluation of a new series of tri-, di-, and mono-N-alkylcarbamylphloroglucinols as bulky inhibitors of acetylcholinesterase.
    Lin MC; Lin GZ; Shen YF; Jian SY; Hsieh DK; Lin J; Lin G
    Chem Res Toxicol; 2012 Jul; 25(7):1462-71. PubMed ID: 22690874
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of two different cholinesterases by tacrine.
    Ahmed M; Rocha JB; Corrêa M; Mazzanti CM; Zanin RF; Morsch AL; Morsch VM; Schetinger MR
    Chem Biol Interact; 2006 Aug; 162(2):165-71. PubMed ID: 16860785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pressure and propylene carbonate denaturation of native and "aged" phosphorylated cholinesterase.
    Masson P; Gouet P; Clery C
    J Mol Biol; 1994 May; 238(3):466-78. PubMed ID: 8176737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of substrate inhibition kinetics in enzymatic chemical oscillations.
    Shen P; Larter R
    Biophys J; 1994 Oct; 67(4):1414-28. PubMed ID: 7819481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cholinesterase: substrate inhibition and substrate activation.
    Reiner E; Simeon-Rudolf V
    Pflugers Arch; 2000; 440(5 Suppl):R118-20. PubMed ID: 11005636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-productive binding of butyryl(thio)choline in the active site of vertebrate acetylcholinesterase.
    Stojan J
    Chem Biol Interact; 2010 Sep; 187(1-3):128-34. PubMed ID: 20452336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the role of tightly bound phosphoenolpyruvate in Escherichia coli 3-deoxy-d-manno-octulosonate 8-phosphate synthase catalysis using quantitative time-resolved electrospray ionization mass spectrometry in the millisecond time range.
    Li Z; Sau AK; Furdui CM; Anderson KS
    Anal Biochem; 2005 Aug; 343(1):35-47. PubMed ID: 15979047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-activity analysis of aging and reactivation of human butyrylcholinesterase inhibited by analogues of tabun.
    Carletti E; Aurbek N; Gillon E; Loiodice M; Nicolet Y; Fontecilla-Camps JC; Masson P; Thiermann H; Nachon F; Worek F
    Biochem J; 2009 Jun; 421(1):97-106. PubMed ID: 19368529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chimeric human cholinesterase. Identification of interaction sites responsible for recognition of acetyl- or butyrylcholinesterase-specific ligands.
    Loewenstein Y; Gnatt A; Neville LF; Soreq H
    J Mol Biol; 1993 Nov; 234(2):289-96. PubMed ID: 8230213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.