These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23157318)

  • 1. Gains of ubiquitylation sites in highly conserved proteins in the human lineage.
    Kim DS; Hahn Y
    BMC Bioinformatics; 2012 Nov; 13():306. PubMed ID: 23157318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of conserved ubiquitylation sites in conserved proteins during human evolution.
    Park D; Goh CJ; Kim H; Lee JS; Hahn Y
    Int J Mol Med; 2018 Oct; 42(4):2203-2212. PubMed ID: 30015863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
    Wagner SA; Beli P; Weinert BT; Nielsen ML; Cox J; Mann M; Choudhary C
    Mol Cell Proteomics; 2011 Oct; 10(10):M111.013284. PubMed ID: 21890473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin.
    Oshikawa K; Matsumoto M; Oyamada K; Nakayama KI
    J Proteome Res; 2012 Feb; 11(2):796-807. PubMed ID: 22053931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel phosphorylation modification sites in human proteins that originated after the human-chimpanzee divergence.
    Kim DS; Hahn Y
    Bioinformatics; 2011 Sep; 27(18):2494-501. PubMed ID: 21775310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level.
    Danielsen JM; Sylvestersen KB; Bekker-Jensen S; Szklarczyk D; Poulsen JW; Horn H; Jensen LJ; Mailand N; Nielsen ML
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.003590. PubMed ID: 21139048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine Residues Are Not Required for Proteasome-Mediated Proteolysis of the Auxin/Indole Acidic Acid Protein IAA1.
    Gilkerson J; Kelley DR; Tam R; Estelle M; Callis J
    Plant Physiol; 2015 Jun; 168(2):708-20. PubMed ID: 25888615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in characterizing ubiquitylation sites by mass spectrometry.
    Sylvestersen KB; Young C; Nielsen ML
    Curr Opin Chem Biol; 2013 Feb; 17(1):49-58. PubMed ID: 23298953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Insights Into the Role of Ubiquitylation of Proteins.
    McDowell GS; Philpott A
    Int Rev Cell Mol Biol; 2016; 325():35-88. PubMed ID: 27241218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological and Physicochemical Functions of Ubiquitylation Revealed by Synthetic Chemistry Approaches.
    Morimoto D; Walinda E; Sugase K; Shirakawa M
    Int J Mol Sci; 2017 May; 18(6):. PubMed ID: 28555012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origins and evolution of ubiquitination sites.
    Hagai T; Tóth-Petróczy Á; Azia A; Levy Y
    Mol Biosyst; 2012 Jul; 8(7):1865-77. PubMed ID: 22588506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the role of ubiquitin-interacting motifs in ubiquitin binding and ubiquitylation.
    Miller SL; Malotky E; O'Bryan JP
    J Biol Chem; 2004 Aug; 279(32):33528-37. PubMed ID: 15155768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-canonical ubiquitylation: mechanisms and consequences.
    McDowell GS; Philpott A
    Int J Biochem Cell Biol; 2013 Aug; 45(8):1833-42. PubMed ID: 23732108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering the SUMOylation and ubiquitylation crosstalk in human cells using sequential peptide immunopurification.
    Lamoliatte F; McManus FP; Maarifi G; Chelbi-Alix MK; Thibault P
    Nat Commun; 2017 Jan; 8():14109. PubMed ID: 28098164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The N-terminal regulatory domain of cyclin A contains redundant ubiquitination targeting sequences and acceptor sites.
    Fung TK; Yam CH; Poon RY
    Cell Cycle; 2005 Oct; 4(10):1411-20. PubMed ID: 16123593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human-specific protein isoforms produced by novel splice sites in the human genome after the human-chimpanzee divergence.
    Kim DS; Hahn Y
    BMC Bioinformatics; 2012 Nov; 13():299. PubMed ID: 23148531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating distant sequence features and radial basis function networks to identify ubiquitin conjugation sites.
    Lee TY; Chen SA; Hung HY; Ou YY
    PLoS One; 2011 Mar; 6(3):e17331. PubMed ID: 21408064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquitylation on canonical and non-canonical sites targets the transcription factor neurogenin for ubiquitin-mediated proteolysis.
    Vosper JM; McDowell GS; Hindley CJ; Fiore-Heriche CS; Kucerova R; Horan I; Philpott A
    J Biol Chem; 2009 Jun; 284(23):15458-68. PubMed ID: 19336407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of lysine ubiquitylation with ensemble classifier and feature selection.
    Zhao X; Li X; Ma Z; Yin M
    Int J Mol Sci; 2011; 12(12):8347-61. PubMed ID: 22272076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.