BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23157377)

  • 1. FAD/folate-dependent tRNA methyltransferase: flavin as a new methyl-transfer agent.
    Hamdane D; Argentini M; Cornu D; Golinelli-Pimpaneau B; Fontecave M
    J Am Chem Soc; 2012 Dec; 134(48):19739-45. PubMed ID: 23157377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of a unique flavin-dependent tRNA-methylating agent.
    Hamdane D; Bruch E; Un S; Field M; Fontecave M
    Biochemistry; 2013 Dec; 52(49):8949-56. PubMed ID: 24228791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A catalytic intermediate and several flavin redox states stabilized by folate-dependent tRNA methyltransferase from Bacillus subtilis.
    Hamdane D; Guerineau V; Un S; Golinelli-Pimpaneau B
    Biochemistry; 2011 Jun; 50(23):5208-19. PubMed ID: 21561081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast photoinduced flavin dynamics in the unusual active site of the tRNA methyltransferase TrmFO.
    Dozova N; Lacombat F; Bou-Nader C; Hamdane D; Plaza P
    Phys Chem Chem Phys; 2019 Apr; 21(17):8743-8756. PubMed ID: 30968076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flavin-Dependent Methylation of RNAs: Complex Chemistry for a Simple Modification.
    Hamdane D; Grosjean H; Fontecave M
    J Mol Biol; 2016 Dec; 428(24 Pt B):4867-4881. PubMed ID: 27825927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavin-Protein Complexes: Aromatic Stacking Assisted by a Hydrogen Bond.
    Hamdane D; Bou-Nader C; Cornu D; Hui-Bon-Hoa G; Fontecave M
    Biochemistry; 2015 Jul; 54(28):4354-64. PubMed ID: 26120776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic structure of a folate/FAD-dependent tRNA T54 methyltransferase.
    Nishimasu H; Ishitani R; Yamashita K; Iwashita C; Hirata A; Hori H; Nureki O
    Proc Natl Acad Sci U S A; 2009 May; 106(20):8180-5. PubMed ID: 19416846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tRNA recognition mechanism of folate/FAD-dependent tRNA methyltransferase (TrmFO).
    Yamagami R; Yamashita K; Nishimasu H; Tomikawa C; Ochi A; Iwashita C; Hirata A; Ishitani R; Nureki O; Hori H
    J Biol Chem; 2012 Dec; 287(51):42480-94. PubMed ID: 23095745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folate-/FAD-dependent tRNA methyltransferase from Thermus thermophilus regulates other modifications in tRNA at low temperatures.
    Yamagami R; Tomikawa C; Shigi N; Kazayama A; Asai S; Takuma H; Hirata A; Fourmy D; Asahara H; Watanabe K; Yoshizawa S; Hori H
    Genes Cells; 2016 Jul; 21(7):740-54. PubMed ID: 27238446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into folate/FAD-dependent tRNA methyltransferase mechanism: role of two highly conserved cysteines in catalysis.
    Hamdane D; Argentini M; Cornu D; Myllykallio H; Skouloubris S; Hui-Bon-Hoa G; Golinelli-Pimpaneau B
    J Biol Chem; 2011 Oct; 286(42):36268-80. PubMed ID: 21846722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a novel gene encoding a flavin-dependent tRNA:m5U methyltransferase in bacteria--evolutionary implications.
    Urbonavicius J; Skouloubris S; Myllykallio H; Grosjean H
    Nucleic Acids Res; 2005; 33(13):3955-64. PubMed ID: 16027442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry.
    Wolthers KR; Scrutton NS
    Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro detection of the enzymatic activity of folate-dependent tRNA (Uracil-54,-C5)-methyltransferase: evolutionary implications.
    Urbonavicius J; Brochier-Armanet C; Skouloubris S; Myllykallio H; Grosjean H
    Methods Enzymol; 2007; 425():103-19. PubMed ID: 17673080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspartate 120 of Escherichia coli methylenetetrahydrofolate reductase: evidence for major roles in folate binding and catalysis and a minor role in flavin reactivity.
    Trimmer EE; Ballou DP; Galloway LJ; Scannell SA; Brinker DR; Casas KR
    Biochemistry; 2005 May; 44(18):6809-22. PubMed ID: 15865426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urea induced unfolding dynamics of flavin adenine dinucleotide (FAD): spectroscopic and molecular dynamics simulation studies from femto-second to nanosecond regime.
    Sengupta A; Singh RK; Gavvala K; Koninti RK; Mukherjee A; Hazra P
    J Phys Chem B; 2014 Feb; 118(7):1881-90. PubMed ID: 24456234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors.
    Zeghouf M; Fontecave M; Macherel D; Covès J
    Biochemistry; 1998 Apr; 37(17):6114-23. PubMed ID: 9558350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyl-accepting RNA in 13762 mammary adenocarcinoma correlated with low adenine methyltransferase levels.
    Salas CE; Uschmann BD; Leboy PS
    Cancer Res; 1982 Dec; 42(12):5004-9. PubMed ID: 7139605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The covalent FAD of monoamine oxidase: structural and functional role and mechanism of the flavinylation reaction.
    Edmondson DE; Newton-Vinson P
    Antioxid Redox Signal; 2001 Oct; 3(5):789-806. PubMed ID: 11761328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.