These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23157656)

  • 1. Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the Lewis Chessmen.
    Pinzari F; Tate J; Bicchieri M; Rhee YJ; Gadd GM
    Environ Microbiol; 2013 Apr; 15(4):1050-62. PubMed ID: 23157656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal degradation of calcium-, lead- and silicon-bearing minerals.
    Adeyemi AO; Gadd GM
    Biometals; 2005 Jun; 18(3):269-81. PubMed ID: 15984571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of vanadinite [Pb5 (VO4 )3 Cl] by fungi.
    Ceci A; Rhee YJ; Kierans M; Hillier S; Pendlowski H; Gray N; Persiani AM; Gadd GM
    Environ Microbiol; 2015 Jun; 17(6):2018-34. PubMed ID: 25181352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals.
    Wei Z; Hillier S; Gadd GM
    Environ Microbiol; 2012 Jul; 14(7):1744-53. PubMed ID: 22591055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium oxalate biomineralization by Piloderma fallax in response to various levels of calcium and phosphorus.
    Tuason MM; Arocena JM
    Appl Environ Microbiol; 2009 Nov; 75(22):7079-85. PubMed ID: 19783744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungal Bioweathering of Mimetite and a General Geomycological Model for Lead Apatite Mineral Biotransformations.
    Ceci A; Kierans M; Hillier S; Persiani AM; Gadd GM
    Appl Environ Microbiol; 2015 Aug; 81(15):4955-64. PubMed ID: 25979898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colonization, penetration and transformation of manganese oxide nodules by Aspergillus niger.
    Ferrier J; Yang Y; Csetenyi L; Gadd GM
    Environ Microbiol; 2019 May; 21(5):1821-1832. PubMed ID: 30884070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of ivory.
    Locke M
    J Morphol; 2008 Apr; 269(4):423-50. PubMed ID: 18157860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal biotransformation of zinc silicate and sulfide mineral ores.
    Wei Z; Liang X; Pendlowski H; Hillier S; Suntornvongsagul K; Sihanonth P; Gadd GM
    Environ Microbiol; 2013 Aug; 15(8):2173-86. PubMed ID: 23419112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of contour sensing in Aspergillus niger by stress and its relevance to fungal growth mechanics and hyphal tip structure.
    Bowen AD; Davidson FA; Keatch R; Gadd GM
    Fungal Genet Biol; 2007 Jun; 44(6):484-91. PubMed ID: 17267249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The three-dimensional arrangement of the mineralized collagen fibers in elephant ivory and its relation to mechanical and optical properties.
    Albéric M; Gourrier A; Wagermaier W; Fratzl P; Reiche I
    Acta Biomater; 2018 May; 72():342-351. PubMed ID: 29477454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Matricaria chamomilla L. flower essential oil on the growth and ultrastructure of Aspergillus niger van Tieghem.
    Tolouee M; Alinezhad S; Saberi R; Eslamifar A; Zad SJ; Jaimand K; Taeb J; Rezaee MB; Kawachi M; Shams-Ghahfarokhi M; Razzaghi-Abyaneh M
    Int J Food Microbiol; 2010 May; 139(3):127-33. PubMed ID: 20385420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal colonization and penetration of mortar as a suitable simulant for concrete: Implications for fungal biodeterioration in the built environment.
    Gadd GM; McGregor L
    Fungal Biol; 2024 Aug; 128(5):1899-1906. PubMed ID: 39059845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation between the Macroscopic Pattern of Elephant Ivory and Its Three-Dimensional Micro-Tubular Network.
    Albéric M; Dean MN; Gourrier A; Wagermaier W; Dunlop JW; Staude A; Fratzl P; Reiche I
    PLoS One; 2017; 12(1):e0166671. PubMed ID: 28125603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeleton bones in museum indoor environments offer niches for fungi and are affected by weathering and deposition of secondary minerals.
    Pinzari F; Cornish L; Jungblut AD
    Environ Microbiol; 2020 Jan; 22(1):59-75. PubMed ID: 31599093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite.
    Li C; Li Q; Wang Z; Ji G; Zhao H; Gao F; Su M; Jiao J; Li Z; Li H
    Sci Rep; 2019 Oct; 9(1):15291. PubMed ID: 31653926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histogenesis of the unique morphology of proboscidean ivory.
    Virág A
    J Morphol; 2012 Dec; 273(12):1406-23. PubMed ID: 22949298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of low shear modeled microgravity on phenotypic and central chitin metabolism in the filamentous fungi Aspergillus niger and Penicillium chrysogenum.
    Sathishkumar Y; Velmurugan N; Lee HM; Rajagopal K; Im CK; Lee YS
    Antonie Van Leeuwenhoek; 2014 Aug; 106(2):197-209. PubMed ID: 24803238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [New applications of submicroscopic techniques in the study of biodegradation caused by lichen thalli].
    Ascaso C; Wierzchos J
    Microbiologia; 1994; 10(1-2):103-110. PubMed ID: 7946113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ancient DNA reveals the chronology of walrus ivory trade from Norse Greenland.
    Star B; Barrett JH; Gondek AT; Boessenkool S
    Proc Biol Sci; 2018 Aug; 285(1884):. PubMed ID: 30089624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.