BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23158338)

  • 1. Highly sensitive and selective colorimetric detection of cartap residue in agricultural products.
    Liu W; Zhang D; Tang Y; Wang Y; Yan F; Li Z; Wang J; Zhou HS
    Talanta; 2012 Nov; 101():382-7. PubMed ID: 23158338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Colorimetric Detection of Cartap Residues by AgNP Sensor with Magnetic Molecularly Imprinted Microspheres as Recognition Elements.
    Wu M; Deng H; Fan Y; Hu Y; Guo Y; Xie L
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29899218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-free gold nanoparticles as colorimetric probes for the non-destructive determination of total dithiocarbamate pesticides after solid phase extraction.
    Giannoulis KM; Giokas DL; Tsogas GZ; Vlessidis AG
    Talanta; 2014 Feb; 119():276-83. PubMed ID: 24401415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissipation pattern and safety evaluation of cartap and its metabolites during tea planting, tea manufacturing and brewing.
    Dai J; Jiang C; Gao G; Zhu L; Chai Y; Chen H; Liu X
    Food Chem; 2020 Jun; 314():126165. PubMed ID: 31972405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method for cartap detection with high sensitivity and selectivity based on the inner filter effect between GSH-Cu NCs and Au NPs.
    Liu H; Dong L; Wang M; Huang G
    Anal Methods; 2021 Jun; 13(24):2659-2664. PubMed ID: 34037634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photolysis kinetics of cartap and nereistoxin in water and tea beverages under irradiation of simulated sunlight and ultraviolet under laboratory conditions.
    Dai J; Jiang C; Chai Y; Wang C; Chen H; Liu X
    Food Chem; 2021 Sep; 355():129595. PubMed ID: 33774224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unusual red-to-brown colorimetric sensing method for ultrasensitive silver(I) ion detection based on a non-aggregation of hyperbranched polyethylenimine derivative stabilized gold nanoparticles.
    Liu Y; Liu Y; Li Z; Liu J; Xu L; Liu X
    Analyst; 2015 Aug; 140(15):5335-43. PubMed ID: 26079979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Sensitive Fluorescent Sensor for Cartap Based on Fluorescence Resonance Energy Transfer Between Gold Nanoparticles and Rhodamine B.
    Dong L; Hou C; Fa H; Yang M; Wu H; Zhang L; Huo D
    J Nanosci Nanotechnol; 2018 Apr; 18(4):2441-2449. PubMed ID: 29442913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A gold nanoparticle-based colorimetric probe for rapid detection of 1-hydroxypyrene in urine.
    Hu Y; Du C; Li Y; Fan L; Li X
    Analyst; 2015 Jul; 140(13):4662-7. PubMed ID: 25988203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Determination of cartap residues in tea by GC/micro-ECD].
    Wu G; Yu H; Bao X; Chen H; Ye Q
    Se Pu; 2007 Mar; 25(2):288-9. PubMed ID: 17580709
    [No Abstract]   [Full Text] [Related]  

  • 11. Colorimetric detection of Hg²+ ions in aqueous media using CA-Au NPs.
    Liu Z; Hu J; Tong S; Cao Q; Yuan H
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():737-40. PubMed ID: 22892371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive and selective cartap nanosensor based on luminescence resonance energy transfer between NaYF4:Yb,Ho nanocrystals and gold nanoparticles.
    Wang Z; Wu L; Shen B; Jiang Z
    Talanta; 2013 Sep; 114():124-30. PubMed ID: 23953451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual detection of organophosphorus pesticides represented by mathamidophos using Au nanoparticles as colorimetric probe.
    Li H; Guo J; Ping H; Liu L; Zhang M; Guan F; Sun C; Zhang Q
    Talanta; 2011 Dec; 87():93-9. PubMed ID: 22099654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles.
    Chi H; Liu B; Guan G; Zhang Z; Han MY
    Analyst; 2010 May; 135(5):1070-5. PubMed ID: 20419258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Research on rapid and quantitative detection method for organophosphorus pesticide residue].
    Sun YX; Chen BT; Yi S; Sun M
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 May; 34(5):1338-42. PubMed ID: 25095434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes.
    Li L; Li B
    Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly selective visual monitoring of hazardous fluoride ion in aqueous media using thiobarbituric-capped gold nanoparticles.
    Boken J; Thatai S; Khurana P; Prasad S; Kumar D
    Talanta; 2015 Jan; 132():278-84. PubMed ID: 25476309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels.
    Liu B; Han G; Zhang Z; Liu R; Jiang C; Wang S; Han MY
    Anal Chem; 2012 Jan; 84(1):255-61. PubMed ID: 22122589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligonucleotides and pesticide regulated peroxidase catalytic activity of hemin for colorimetric detection of isocarbophos in vegetables by naked eyes.
    Luo D; Chen H; Zhou P; Tao H; Wu Y
    Anal Bioanal Chem; 2019 Nov; 411(29):7857-7868. PubMed ID: 31705220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspartic acid-promoted highly selective and sensitive colorimetric sensing of cysteine in rat brain.
    Qian Q; Deng J; Wang D; Yang L; Yu P; Mao L
    Anal Chem; 2012 Nov; 84(21):9579-84. PubMed ID: 23025476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.